締切済み 二重積分について 2014/04/16 01:08 ∬dxdy√(a^2-x^2-y^2)積分範囲x^2+y^2≦a^2の解法を教えてください。 みんなの回答 (2) 専門家の回答 みんなの回答 stomachman ベストアンサー率57% (1014/1775) 2014/04/19 03:11 回答No.2 ご質問の定積分は ∫∫∫ dzdxdy (積分範囲 x^2+y^2+z^2 ≦ a^2, z≧0) に等しい。(∫ dzだけやってみれば分かります。)つまりこの定積分は半径aの半球の体積を表している。なのでコタエは(2π(a^3))/3。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 spring135 ベストアンサー率44% (1487/3332) 2014/04/16 09:52 回答No.1 xy平面からrΘ平面に変換します。 x=rcosΘ, y=rsinΘ 0≦r≦a, 0≦Θ≦2π 公式 ∬[Dxy]dxdyF(x,y)=∬[DrΘ]drdΘF(rcosΘ,rsinΘ)∂(x,y)/∂(r,Θ) ∂(x,y)/∂(r,Θ)=行列(a11,a12,a21,a22) a11=∂x/∂r=cosΘ a12=∂y/∂r=sinΘ a21=∂x/∂Θ=-rsinΘ a22=∂y/∂Θ=rcosΘ ∂(x,y)/∂(r,Θ)=r F(x,y)=√(a^2-x^2-y^2)=√(a^2-r^2) 以上より I=∬dxdy√(a^2-x^2-y^2)=∬drdΘ√(a^2-r^2)r=2π∫(r:0→a)r√(a^2-r^2)dr u^2=a^2-r^2とおく。 rdr=-udu I=2π∫(r:0→a)r√(a^2-r^2)dr=2π∫(u:a→0)(-u)udu=2π∫(u:0→a)u^2du =2π[u^3/3](0→a)=2πa^3/3 Θ 質問者 お礼 2014/04/17 17:19 ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 二重積分の解法 次の問題の解き方に悩んでいます。 ∫∫ (x^2 + y^2) dxdy (ただし、 x^2 + y^2 ≦ 1) この式を自分なりに下記のように解いてみました。 dyは-(1-x^2)^1/2 ~ (1-x^2)^1/2、dxは-1~1の積分範囲としました。 ∫ dx ∫ dy = ∫ 2(1-x^2)^1/2 dx = 2[ 1/2 ( x(1-x^2)^1/2 + arcsin x )] (ここでdxなので[ ]内の積分範囲-1~1) = π/2 - (-π/2) = π としてみました。しかし、問題集では答えがπ/2となっています(解法は載っていない)。 上の解法のどこ(積分範囲?)が誤っているのでしょうか? 2重積分 次の2重積分が求められません。 (1)∬1/(x+y) dxdy 範囲:0≦x≦2,1≦y≦2 (2)∬(xy)/(x+y) dxdy 範囲:1≦x≦2,0≦y≦1 二重積分、教えて下さい! 以下の問題の解法がわかりません。 教えてください。よろしくお願いします! ∮∮y/(3+x^2y^2)dxdy B=[0,1]×[0.3] すいません、、線積分のインテグラルしかなく、普通の積分です。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 重積分 ∫∫dxdy/(x^2+y^2)^(5/2) 積分範囲 x^2+y^2≦2 x≧1 y≧0 この問題が分かりません。教えてください。 2重積分問題の解法を教えてください。 いつも積分を解きますが、今回2重積分の解法お願いします。 質問はそのとうりです。 積分範囲Dを図示し、次の2重積分の値を求めよ ∬D y log x dxdy D= {(x,y) 0< y < x^2 , 1 < x < e } 2重積分 ∬[D]√(1-x^2)dxdy D: x^2+y^2≦1, x≧0, y≧0 詳しい解説お願いします。 特に2重積分を累次積分に変換するときの、xとyの範囲がわかりません。 二重積分と積分計算 ∬x^2dxdy 積分範囲D={(x,y) | 0≦x , 0≦y , √(x)+√(y)≦1} 上記の二重積分を解こうとしているのですが、 積分範囲Dをグラフ化し 0≦x≦1 , 0≦y≦{1-√(x)}^2 と解釈して ∫[x{1-√(x)}]^2dx 積分範囲 0≦x≦1 と、ここまで計算したところで詰まってしまいました。 そこで質問なのですが、 1)ここまでの考え方は正解ですか? 2)このあとの積分計算法を教えてください。 よろしくお願いします。 2重積分の積分順序変更 2重積分の積分順序変更 「∫[0→2]∫[0→2x](f(x,y))dxdy の積分順序を変更せよ」 という問題の解説をどなたかしていただけませんでしょうか。 ∫[0→2x]∫[0→2](f(x,y))dxdyであるのならば解けるのですが、 ∫[0→2]∫[0→2x](f(x,y))dxdy(積分順序変更前のxの範囲が0≦x≦2x?)がわかりません。(誤植じゃないかと疑ったほどで…) お手数をおかけしますが、よろしくお願いします。 2重積分 2重積分の質問です。 2重積分の計算で D={(x,y)|a≦x≦b,ψ1(x)≦y≦ψ2(x)}のとき ∬f(x,y)dxdy=∫[a→b]{∫[ψ1(x)→ψ2(x)] f(x,y)dy}dxですが ∬f(x,y)dxdy=∫[ψ1(x)→ψ2(x)]{∫[a→b]f(x,y)dx}dyでも可能でしょうか?? よろしくお願いします。 2重積分について 次の積分を計算せよ。 ∫∫x^2*y dxdy D={(x,y)|x^2+y^2≦2x+2y} この積分はx=rcosΘ y=rsinΘでおきかえて 範囲は0≦r≦√2 -π/2≦Θ≦π/2 求める答えは-8√2/9で合っているでしょうか? もし合っていないなら正しい答えを求める数式を書いていただけると幸いです。 重積分 次の重積分について、問題を解いてください。 R>0として、領域D,D_+,D_- が D = {(x,y)|0≦x≦R,0≦y≦R} D_+ = {(x,y)|x^2+y^2≦2R^2,x≧0,y≧0} D_- = {(x,y)|x^2+y^2≦R^2,x≧0,y≧0} で 与えられるとき、以下の問いに答えよ。ただし、aは正の定数である。 (1) 2重積分∮∮D e^{-a(x^2+y^2)}dxdy,∮∮D_+ e^{-a(x^2+y^2)}dxdy,∮∮D_- e^{-a(x^2+y^2)}dxdyの大小関係を示しなさい。 (2) 2重積分 ,∮∮D_- e^{-a(x^2+y^2)}dxdyを計算しなさい。 (3) (2)の結果をR→∞としたときの極限値を求めよ。 (4) 定積分∮(0→∞) e^(-ax^2) dx = (1/2)√(π/a) を証明せよ。 途中式もお願いします。 2重積分の計算方法 下に書いた2重積分の方法を教えてください。 0≦x≦1, 0≦y≦x^2 の範囲で、 ∬e^(y/x)dxdy e っていうのはネイピア数です。 何題も悪いんですが… a≦x≦b, c≦y≦d の範囲で、 ∬xy sin(x^2+y^2) dxdy どうかわかりやすい説明をお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 二重積分について。 x、yがx^2+y^2≦1の範囲Dにあるとき、 I=∫∫√(1-x^2-y^2)/(1+x^2+y^2)dxdy の積分をx=rcosθ,y=rsinθに変換し、Iをθとrに関する積分に直し、値を求めよ。という問題なんですが、 x=rcosθ,y=rsinθの関係を式に代入し、また、dx、dyをdθ、drに変換し、Dの範囲をr≦1/√2として積分を行おうと思ったのですが、なかなか展開していけませんでした。 誰かわかりそうな方いらっしゃいましたら、よろしくお願いします。 2重積分part2 問1 A=∬D √(a^2-x^2-y^2)dxdy を 領域D:x^2+y^2≦a^2 において2重積分を行なうのですが、 これはさっきのと比べながらやろうとしたのですが、 領域Dは半径aの円の中であって・・・・・ これからどうすれば? 問2 領域D:0≦x+y≦1,0≦x-y≦1 のとき A=∬D e^x dxdy を求める。 領域を図示してみると ちょうどx=1から負の方向だということがわかったのですが・・・ この場合、yの範囲を(x-1)~(-x+1) とすればいいのですか? でもそうするとxの範囲は??? 頭が正常に機能していないみたいです。 助けてください。 重積分 ∬{(x+y)exp(-(x+y))/2y+1}dxdy 0≦x≦∞、0≦y≦x という問題でx+y=u、2y+1=vとおいて変数変換しようとしたのですが積分範囲をどうして良いか分からなくて困ってます。 他にも解き方あったら参考に聞かせてください。 二重積分の積分範囲がわかりません ∮∮D xy dxdy x=<y=<-x+2 ,0=<x=<1 での積分範囲がわからず困っています 外側はdyより 0→2だとおもうのですがdxは求めれません よろしくお願いします 2重積分 ∬D log(x^2+y^2)dxdy,D={(x,y)|1≦x^2+y^2≦4}を積分しなさい…という問題です。極座標の変数変換を使うのはわかるのですが、どう計算すればいいかわからなくなってきました。 x=γcosθ,y=γsinθをxとyの範囲にそれぞれ代入しますよね。そこからどうすればいいのですか? 重積分 ∬(x^2n+2(y^2n)+1)exp(x^2+y^2)dxdy 積分範囲は原点中心半径1の円の内部です。 初めの括弧の中身は (xの2n乗) + 2かける(yの2n乗) + 1 です。 積分範囲が円なので極座標に変換したんですけど いまいち分かりませんでした。 どうやるのか手順だけでも参考に聞かせてください。 3重積分の計算問題 下記の問題です。 (1) ∫∫∫x^2 dxdydz 積分範囲={(x,y,z); |x|+|y|+|z|<=1 } (2) ∬ |x-y| dxdy 積分範囲={(x,y); |x|<=1,|y|<=1,|x-y|<=1 } ご回答よろしくお願いします。 根号を含む積分範囲の変換について(重積分) 積分範囲の変換に自信がありません。お手数を掛けますが、回答者の皆様に添削をお願いしたく思います。 ∫∫x dxdy 積分範囲:√x+√y≦1, x≧0 , y≧0 極座標変換も考えたのですが、計算が複雑になりそうなので別の方法で考えます。 積分範囲より 0≦√x≦1 , 0≦1-√x 0≦1-√xかつ√x+√y≦1 ⇒ y≦(1-√x)^2 ∴ 0≦y≦(1-√x)^2 0≦√x≦1より 0≦x≦1 以上より 積分範囲は 0≦x≦1 , y≦(1-√x)^2 と考えてもよいのでしょうか? グラフを考えると合っている気もしますが… ご指導をお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます。