- 締切済み
ベキ乗平均とStolarsky meanをまとめる
n個の正の数x[1]、…、x[n]に対して、それぞれp乗したものの和をnで割り、そして1/p乗したものは、 ベキ乗平均 {(x[1]^p+…+x[n]^p)/n}^(1/p) と呼ばれ、実数pに関して単調増加になることが知られています。 n=2のとき、{(x^p+y^p)/2}^(1/p) という形で、 p→-∞のとき最小値、 p=-1のとき調和平均、 p→0のとき相乗平均、 p=1のとき相加平均、 p→∞のとき最大値です。 また、Stolarsky meanと呼ばれるものがあって、 http://en.wikipedia.org/wiki/Stolarsky_mean によると、 f^(n)-1(n!・f[x[0],…,x[n]]) for f(x)=x^p なのですが、同様に実数pに関して単調増加になることが知られています。 2変数のとき、{(x^p-y^p)/p(x-y)}^{1/(p-1)} という形で、 p→-∞のとき最小値、 p=-1のとき相乗平均、 p→0のとき対数平均、 p=2のとき相加平均、 p→∞のとき最大値です。 2変数のとき、ベキ乗平均とStolarsky meanをまとめたものがあるようで、 E_r,s(x,y)={r(x^s-y^s)/s(x^r-y^r)}^{1/(s-r)} において、r=1とすると、Stolarsky mean E_1,s(x,y)={(x^s-y^s)/s(x-y)}^{1/(s-1)} になり、s=2rとすると、ベキ乗平均 E_r,2r(x,y)={(x^2r-y^2r)/2(x^r-y^r)}^{1/r}={(x^r+y^r)/2}^(1/r) になります。 ここでn変数のときのベキ乗平均とStolarsky meanをまとめたものはさすがにたいへんなので、 3変数のときのベキ乗平均とStolarsky meanをまとめたものを具体的に知りたく思うのですが。 なお、3変数のときのベキ乗平均は {(x^p+y^p+z^3)/2}^(1/p) で、3変数のときのStolarsky meanは僕の計算によると { 2x^p/p(p-1)(x-y)(x-z) + 2y^p/p(p-1)(y-z)(y-x) + 2z^p/p(p-1)(z-x)(z-y)} ^ {1/(p-2)} になりました。
- みんなの回答 (4)
- 専門家の回答
みんなの回答
- stomachman
- ベストアンサー率57% (1014/1775)
- stomachman
- ベストアンサー率57% (1014/1775)
- stomachman
- ベストアンサー率57% (1014/1775)
- stomachman
- ベストアンサー率57% (1014/1775)
お礼
ありがとうございます。 「平均考」と検索して出てくる論文によると、平均には、 対称性、加重化、多変数化、作用素版、連続版 などの側面があり、また、万能なものはなさそうです。 今回の質問には、名前がついている平均を多変数としてすべてまとめたい、というのがありましたが、 ハイブリッドという案もいただきましたが、ここらでいったんあきらめたいと思います。
補足
相加相乗平均の関係の拡張として、中間値によるものと、平均値によるものがありますが、 基本対称式によるものもあると思いだしました。 3つの正数だと、 (abc)^(1/3)≦√{(ab+bc+ca)/3}≦(a+b+c)/3 ただこれを実数pによる系列として表したり、中間値によるベキ乗平均、平均値によるStolarsky meanとを統一することはできていないと思います。