この英文の和訳をお願いします。
5. Normalization of collisional rate
First, we introduce an enhancement factor defined as the ratio of the collisional rate <P(e, i)> to that in the two-body approximation <P(e, i)>_2B:
R(e, i)= <P(e, i)>/ <P(e, i)>_2B (27)
The factor R(e, i) gives a measure of the collisional rate enhancement due to the effect of solar gravity. In the two-dimensional case, <P(e,0)> is given by Eq. (11) while <P(e, 0)>_2B is defined by
<P(e,0)>_2B=(2/π)E(√(3/4))ρ_(2D)v, (28)
where E(k) is the second kind complete elliptic integral and ρ_(2D)v is given by Eq. (3) with <e(2/2)> replaced by e^2 (note that the units are changed, i.e., v=(e^2+i^2)^(1/2) and Gm_p=3). The numerical coefficient 2E(k)/π(=0.77) is introduced so that the collisional rate <P(e,0)>_2B coincides with <P(e,0)> in the high energy limit, v→∞ (see Paper I and Greenzweig and Lissauer, 1989).
In the three-dimensional case, <P(e,i)> is given by Eq. (10) while <P(e, i)>_2B by Eq. (1) with <e(2/2) > and <i(2/2)> replaced, respectively, by e^2 and i^2. It should be noticed that <P(e,i)> has the dimension per unit surface number density n_s. Then, we define <P(e,i)>_2B by nσv/n_s; (n_s/n) corresponds to twice the scale height (in the z-direction) of a swarm of planetesimals. Usually, the scale height is taken to be i*a_0* (i.e., i, in the units here). As in the two-dimensional case, we require that <P(e,i)>_2B must coincide with <P(e,i)> in the high energy limit. Then, by introducing the numerical coefficient (2/π)^2E(k) (=0.49~0.64) (see Paper I), we have
<P(e,i)>_2B=(2/π)^2E(k)πr_p^2{1+(6/(r_p(e^2+i^2)) }(e^2+i^2)^(1/2)/(2i), (29)
with
k^2=3e^2/4(e^2+i^2). (30)
6. The collisional rate for the two-dimensional case
In this section, we concentrate on the collisional rate for the two-dimensional case where i=0. In this case, the small degrees of freedom of relative motion allow us to investigate in detail behaviors of orbital motion: it is sufficient to find collision orbits only in the b-τ two-dimensional phase space for each e, as seen in Eq. (11).
長文ですが、よろしくお願いします。
お礼
ありがとうございます! 皆さんのアドバイスから、この製品の用途やコンテンツ作成現場の状況もイメージできるようになりました。