• ベストアンサー

4次元以上

この地球上で、4次元以上の空間(?)を 表現することは可能ですか? もしくは、想像することは可能ですか?

質問者が選んだベストアンサー

  • ベストアンサー
回答No.3

立体をななめから見て斜視図や見取り図のように平面にしますよね。 同じように、四次元の超立体を三次元にして見取り立体とかで イメージします。ただし、WEB上では二次元の画面になっちゃって 想像するのは、超立体感覚のある人ならでしょうか。参考URL

参考URL:
http://www.hokuriku.ne.jp/fukiyo/math-obe/4zigen.htm
humihiro2003
質問者

お礼

ご回答ありがとうございます。 どうやら私には超立体感覚はなかったようです・・・

その他の回答 (2)

noname#7082
noname#7082
回答No.2

独断ですが… あなたの質問文の頭に【わたしが】という文字を付けてもいいですか? 【{わたしが}この地球上で、4次元以上の空間(?)を表現することは可能ですか? もしくは、想像することは可能ですか?】 この問題に他人の言葉でなくあなたが 自分自身で熟考されますように下記URLの本を お勧めします。 http://homepage1.nifty.com/pdo/TOintro.htm ちなみに、私は 表現することも想像することも可能だと判断します。

参考URL:
http://homepage1.nifty.com/pdo/TOintro.htm
humihiro2003
質問者

お礼

ご回答ありがとうございます。

humihiro2003
質問者

補足

すいません。私の言葉が足らず、 思い通りの回答が得られない可能性があるので、 付け足しさせてください。 表現方法は「数」ではなく、 図案化できるか。 人に見せることができるか。 ということにさせてください。 できれば、それを見ることのできるURLを紹介していただきたいです。

回答No.1

三次元の正多面体に相当する四次元図形は正多胞体というように 数学的にはあります。 つまり、正方形→立方体→正8胞体 (超立方体) というように。 さらに高次元の正多面体についてもあります。 くわしくは、参考URL

参考URL:
http://hp.vector.co.jp/authors/VA030421/fdd03.htm
humihiro2003
質問者

お礼

ご回答ありがとうございます。 うわぁ~激ムズです・・・

関連するQ&A