ベストアンサー 微分 2013/10/12 10:29 画像の問題をもう一度微分せよ(正しい言葉でなくてすみません)(d²y/dx²せよ)という問題です。 式が2(3x+4)³/² までだったらわかるのですが。。やり方を教えて頂けますか? 画像を拡大する みんなの回答 (4) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Knotopolog ベストアンサー率50% (564/1107) 2013/10/12 11:16 回答No.2 (dy/dx)=2(3x+4)³/² - 6x - 8 から d²y/dx² を求めるには, d²y/dx² = [2(3x+4)³/² の微分]-[6x の微分]-[8 の微分] になります.計算してみて下さい. もし,分からなければ,補足へ再度,質問して下さい. 詳しく,お教えします. 質問者 補足 2013/10/12 11:47 有難うございます、そうすると 2(3x+4)3/2を微分すると 9(3x+4)½ 、-6x-8 はー6となるので答えは9(3x+4)½-6 であっていますでしょうか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (3) Knotopolog ベストアンサー率50% (564/1107) 2013/10/12 12:08 回答No.4 No.2 です. 9(3x+4)^(½)-6 で,正解です.つまり, (d^2y/dx^2) = 9(3x+4)^(1/2) - 6 です. 質問者 お礼 2013/10/12 12:14 有難うございました、助かりました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 info22_ ベストアンサー率67% (2650/3922) 2013/10/12 11:58 回答No.3 >答えは9(3x+4)^(½)-6 これで合ってます。 質問者 お礼 2013/10/12 12:14 有難うございます、すっきりしました。 info22様、ベストアンサーはやり方を分かりやすく教えて下さったNO2の方にさせて頂きますが(ベストアンサーを配分出来たらいいのに、といつも思います)答えの確認をして下さって本当に助かりました、有難うございました! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 noname#190065 2013/10/12 11:09 回答No.1 2( ・ )^(3/2)全体のの部分をxで微分し、それにかける( ・ )内の微分、そして-6x-8を部分。 ↑ 判りにくければ、u=( ・ )と置き、2u^(3/2)-6x-8をxで微分 ↑ ここも分かりにくければ、下記URL参照。 http://w3e.kanazawa-it.ac.jp/math/category/bibun/henkan-tex.cgi?target=/math/category/bibun/gouseikannsuu-no-bibun.html 質問者 お礼 2013/10/12 11:49 詳しく書いて頂きありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分と偏微分の問題です 次の問題が与えられています。 x=a*sin^3t , y=a*cos^3tのとき、dy/dx,d^2y/dx^2、∂y/∂x,∂^2y/∂x^2を求めよ。 まず、微分の方なのですが、xとyをtで微分し、そこから式を進めて、 dy/dx =-1/(sin^2 t) が求まりました。 そして、 d^2y/dx^2 = - 1/3a*cost が求まりました。 これについて、まず、本当に正しいのかを添削してください。 間違っていましたら、ご解説をお願いします。 そして、偏微分についてですが、これはどのように回答していのが正しいのでしょうか。 「偏微分は微分と同じ答えになるので……」と、簡単に書いてしまって良いモノか悩んでいます。 以上、よろしくお願いします。 微分の微分 微分の微分は、 d^2y/dx^2=(dy'/dt)/(dx'/dt)=y''/x' と習ったのですが、 どうして y'' を x'で割らなければいけないのですか? y''を求めるのだから、y'をもう一度微分すればいいのに、 と思うのですが。。。 例えば、x= sin t y=t^2+7t+3 があります。 dy/dx(←実はこれもなん式なのかよく分かっていませんが、、、)は、 y'/x'= (2t+7)/cos t ですよね。 それで、さらに、それを微分したいのですが、 その時に、私は {(2t+7)'*cost-(2t+7)*(cost)'}/(cost)^2 だけで良いと思うのに、本当はそれを x'で割るのですよね。 それで、答えは {2cost+(2t+7)(sint)}/(cost)^3 としなければいけないのが 不思議でたまりません。 解説を宜しくお願いします。 微分と偏微分の問題です 次の問題が与えられています。 x=a*sin^3t , y=a*cos^3tのとき、dy/dx,d^2y/dx^2、∂y/∂x,∂^2y/∂x^2を求めよ。 まず、微分の方なのですが、xとyをtで微分し、そこから式を進めて、 dy/dx = - sin^3t/cos^3t = -tan^3t が求まりました。 そして、 d^2y/dx^2 = - 1/a*cos^9t が求まりました。 これについて、まず、本当に正しいのかを添削してください。 間違っていましたら、ご解説をお願いします。 そして、偏微分についてですが、これはどのように回答していくのが正しいのでしょうか。 偏微分をよく知らないこともあり、どうやって回答していくべきか悩んでいます。 ご解説をお願いします。 以上、よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 偏微分の問題です 偏微分の問題です 数学の中間試験の過去問で疑問にぶち当たりました。 u=x+y v=x-2y のとき、du/dx dx/du を求めなさいという問題なのですが、(dは全てラウンドディーです)答えではそれぞれ1と2/3となっています。1つ目の式のyを定数とみてdu/dxが1というのは分かります。また、yに二つ目の式を代入し、変形してから偏微分すると、2/3に確かになります。しかし、一つ目の式をx=u-yと変形してdx/du=1ではダメなのでしょうか。 このように、2つ式が与えられたときに、dx/duまたは、du/dxが何を定数とみなして偏微分するかによって値が異なってしまうとおもいます。上の場合では、xをuとvの式であらわしてvを定数とみなして偏微分する場合と、xをuとyの式であらわしてyを定数とみなして偏微分する場合とでは答えが変わります。 どうしたらいいのか見当もつきません。どうか皆様ご教授ください。 以下問題を添付します。 微分 (d/dx)x^x (X>0) このような問題があったのですが、これを解きたいです。 とくためには、対数微分法を使わないといけないと考えました。しかし、y=の形では、対数微分法をやったことがありますが、(d/dx)このような表示はどのようにやったらいいのですか?教えてください。 微分についての質問です x^2+y^2=1について(d^2)y/dx^2をもとめよ なんですが 解答は 2x+2ydy/dx=0 dy/dx=-x/y さらに両辺をxについて微分すると (d^2)y/dx^2=(xy'-x'y)/y^2=-1/y^3 だったんですが 私はdy/dx=-x/y さらに両辺をxについて微分すると (d/dx)・(dy/dx)=(d/dx)-x/y で(d^2)y/dx^2=-1/yだと思うんですが yについて微分しないと(xy'-x'y)/y^2にならないとおもうんですがどうしてこのようになるんでしょうか? 微分法について 宜しくお願いします。 「微分法」そもそもの意味がわかりません。 というのも、○○で微分する、というのはどう意味かということです。 y=x^2 を「xで微分する」ということと、「yで微分する」ということの違いはなんなのかがわかりません。 xで微分すればもちろんy'=2xなのですが、yで微分するとどうなるのでしょうか。 接線の傾きを表しているという説明は学校で聞きましたし、理解はしましたが本質的な部分がさっぱり理解できておらず、「微分法という操作」ができるだけです。 「微分する」とはどういうことなのか、分かりやすく教えていただければ幸いです。 もともと悩んでいた問題は以下のものです。 yがxの関数で、関係式2x^2+3y^2=6 (y≠0)が成り立つ時、dy/dxを求めよ 回答では d/dx(2x^2)+d/dx(3y^2)=0 4x+6y・dy/dx=0 dy/dx=-2x/3y とありますが、なぜ4x+6y・dy/dx=0のdy/dx部分が残るのかわかりません。 わかりにくく、抽象的な文章で申し訳ありませんが、ご教授お願いいたします。 微分方程式 (1)x>0でx^2y''+xy'-y=0(*)という問題でy=xが解であることを求めたのですが、yと独立な微分方程式(*)の解が求められません。 (2)x^2(d^2y/dx^2)-2y=0の解き方をいろいろ調べて試したのですがどうしても解けません。 この二点について途中式等詳しく教えていただけないでしょうか?お願いします。 同次形高階微分方程式について 同次形高階微分方程式について 同次形高階微分方程式の単元を読んでいますと、「y,dy,d2y について同次の場合」とか「x,dx について同次の場合」とあるのですが、式を見てy,dy,d2y について同次なのか、x,dx について同次なのか判断できません。具体的には、 xy(d2y/dx2)-x(dy/dx)^2+y(dy/dx)=0 はy,dy,d2y について2次の同次形で、x^2(d2y/dx2)+x(dy/dx)+y=0 はx,dx について0次の同次形 であるとありますが、どのように判断すればよろしいのでしょうか? 微分について質問です。 数学IIIでの質問です。 次の式からdy/dxをx及びyを用いて表せ xy=10 という問題なのですが自分は最初、 y=10/xとし dy/dx=10・(-1)/x*2 dy/dx=-10/x*2 これが答えだと思ったのですが回答は 1・y+x・dy/dx=0 dy/dx=-y/x となっています。 これは積の微分公式を使ったということなんですが xyを微分するときでも使えるんですか? それとこのxyを微分するとyになると思うんですがなぜ積の微分公式を使うのですか? 回答お願いします。 連立微分方程式の問題 x, u, v,を実数,a, τを実定数とする。次の連立微分方程式を解いてu, vを求めよ。 式は添付画像をご参照ください。 という問題です。 vを消去してuの微分方程式に書き換えたところ d4y/dx4(u)+(4a^2)(d4y/dx4)(u)=0 という式が得られてこの式を解くことができなくて... 私は間違っているのかそれとも別のやり方でやるべきですか。 この連立微分方程式の解き方をご存知の方がいらっしゃいましたら、ご指導お願いします。 全微分について いつもお世話になっております. この度は次の2つの問題に関して質問させていただきます. 問1 次の連立方程式の全微分をとり,dy/dxを求めなさい. zf(x)+(1-z)g(z)=0 z=yx 問2 方程式ye^(2x)=10について-dy/dxとd/dx(-dy/dx)を求めなさい. 問1に関しては,f(x)とg(z)が与えられていない状況でどう考えて良いのかが全くわかりません.yxf(x)+(1-yx)g(z)=0として全微分すればよいのでしょうか?もしそうだとするならば計算が煩雑になるので,他によい解き方はありませんでしょうか? 問2は全微分を行うと,2ye^(2x)dx+e^(2x)dy=0となり,-dy/dx=2yと求められました.しかし,与式をはじめにy=10e^(-2x)と変形してから微分すると-dy/dx=20e^(-2x)となりました.どうして同じ-dy/dxであるにも関わらず答えが違うのでしょうか? 以上2点,よろしくお願い致します. 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数||| 微分 x・dx/dt+y・dy/dt=0の両辺を さらにtで微分したときの式がよく分かりません。 x・dx/dt+y・dy/dt=0 (d^2x/dt^2)+(d^2y/dt^2)=0 d/dt(dx/dt)+d/dt(dy/dt)=0 d/dt(dx/dt+dy/dt)=0 自分でやってみましたが 全く自信がありません...。 分かる方いましたらよろしくお願いします。 微分を絡めた数学的帰納法の問題 y=x^nのn次関数を求めよ。 という問題で、数学的帰納法を使い、n=1のときは理解できましたが、k+1のときの証明が理解できません。この問題の途中に出てきた式で y^(k+1)微分=d^k*(dx^(k+1)/dx)/dx^k という式を理解できません。yをk+1回微分したものなのになんでこうなるのでしょうか。これではk+2回微分した式になっている気がしてしまいます。 どなたか教えてください。よろしくお願いいたします。 微分の矛盾 x/yを微分するために、d/dxをかけました。 (x/y)・(d/dx)=(1/y)・(dx/dx)=(1/y)・1=1/y でも答えは違います。何がおかしいのでしょうか? 微分の式の指数の扱い方 x=f(t)、y=g(t)で表されているとき。 d^2y/dx^2はどのように扱えばいいのでしょうか。 微分の式についている指数をどのように扱えばいいかわかりません。 つまり d^2yとdx^2をどのように扱えばいいかわかりません。 どなたか解説お願いします。 非線形微分方程式の問題について 微分方程式の問題について質問させていただきます。 [問題] 以下の微分方程式を解け。 dy/dx(dy/dx-y)=x(x-y) ただし、x=0のときy=0とする。 非線形なのでp=dy/dxとおいて、解いたのですが、解として (1) y = 1 + x - e^-x (2) y = (1/2)x^2 の二つが出てきました。しかし、(1)の方は微分して与式に代入しても、 式を満たさなかったのでですが、これらの解は合っているでしょうか? おそらく、(1)は間違っていると思うのですが、p=dy/dxとおいて解くと、なぜかこのような解が出てきてしまいました。 回答よろしくお願いいたします。 微分 (d^2)y/(dx^2) 微分で、(d^2)y/(dx^2)っていう表現よく出てきますよね? これについてそもそもなぜ2乗の位置が違うのかって言うのがわからなくなったのですが,,, そもそもdというのはたとえばxで微分したら、微分したののあとにxで微分したことを示すためにdx、yで微分したのならそのあとにdyとかくのですよね? そこから考えたのですが(数学的に正しいかどうかは一切わかりませんが個人的にはこれが一番筋が通りそうな気がしました)、たとえばy=x^3とかで dy=3(x^2)dx d(dy)=D[3(x^2)]dx (d^2)y=6x(dx)dx=6x(dx^2) とつまりdxのまえにxの文字式があればxで微分できるため新しいdxができるが、dyの前にyを含んだ文字がないのでyで微分できないため?といった風に考えました。。。(汗) 正確な解釈を教えてください。あとdxとかの扱い方がいまいちよくわかってないので、上ので間違ってるところの指摘お願いします。 微分方程式 こんにちは。微分方程式の問題が解けなくて困っています。 次のx(t)に関する微分方程式 d^2x/dt^2=-1/x^2 ただし初期条件はt=0でx=X0(x0>0),dx/dt=√2であるとする。 問題 与式の両辺にdx/dtを乗じて積分することにより、初期条件を満たすxについての1階微分方程式をもとめよ。 必要ならば、公式d/dt(dx/dt)^2=2*(dx/dt)*(d^2x/dt^2) 少し問題の書き方がおかしいかもしれませんが(微分の書き方)どなたかお願いします。 自分なりにといたのですが 与式の両辺にdx/dtをかけて dx/dt(d^2x/dt^2)=-1/x^2*(dx/dt) 与えられた公式をつかい (1/2)*d/dt*(dx/dt)^2=-dx/dt*(1/x^2) ∫(1/2)*d/dt*(dx/dt)^2=-∫dx/dt*(1/x^2) ????? と与えられたヒント通りにしてそこからどうしたらいいのかわからなくなってしまいました・・・ 完全微分方程式の問題の解き方 完全微分方程式 次の完全微分方程式を解けと言う問題で (x dx + y dy)/(√(1+x^2+y^2) = 0 ・・・・・(1) これを P(x)dx + Q(y)dy = 0が完全微分方程式なら一般解は ∫P(x)dx - ∫{(∂/∂y)(∫P(x)dx) - Q(y)}dy = C を使おうと、式(1)を (x / (√(1+x^2+y^2))dx + (y / (√(1+x^2+y^2))dy=0 として解こうかと思ったんですが、 途中の計算で式が複雑になりすぎて行き詰ってしまいました。 公式に当てはめる前にもっと式を変形しないと駄目なんでしょうか? もっと他の方法があるんでしょうか? アドバイスお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
補足
有難うございます、そうすると 2(3x+4)3/2を微分すると 9(3x+4)½ 、-6x-8 はー6となるので答えは9(3x+4)½-6 であっていますでしょうか?