ベストアンサー 微分の矛盾 2006/11/26 03:57 x/yを微分するために、d/dxをかけました。 (x/y)・(d/dx)=(1/y)・(dx/dx)=(1/y)・1=1/y でも答えは違います。何がおかしいのでしょうか? みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー velvet-rope ベストアンサー率31% (14/44) 2006/11/27 18:03 回答No.3 (x/y)・(d/dx)はx/yをxで微分するという意味ではありません。 また、(d/dx)は演算子です。 以下、x/yをxで微分するという前提でお話します。 yがxと無関係であれば、(d/dx)(x/y)=1/yとなりますが、慣習の問題で、yはxによって決まる値(yはxの関数)であると思うので、1/yにはなりません。 高校数学でできる範囲の微分ですので、ご自身で調べられることをお勧めします。 質問者 お礼 2006/11/30 07:29 >yはxによって決まる値 言われてみればそのとおりですね。 それが正しいことはわかるのですが、なぜそれが 参考書に説明として載っていないのかが理解できませんね。 微積って理解の下で解いていったら楽しそうなんですが、 現在はただの記号クイズって感じで手探り状態です。 回答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) pyon1956 ベストアンサー率35% (484/1350) 2006/11/26 07:21 回答No.2 d/dxをかけました、というのが不合理です。 d/dxは数ではないので、「かけました」といってもどのようにかけたのですか、ということになります。 かけ算だと考えるとおっしゃる通りの不合理が生じますが、かけ算ではないからそういう計算は出来ない、というだけのことです。 ついでながら、d/dxは高校まででは記号ですから後ろから「かける」というのは問題外です。 大学の数学なら、一応演算子として扱うことも出来ますが、この場合ちゃんと「・」の意味を定義しないといけません。数ではないものの計算には計算の仕方を定義しないといけないのですが、もちろん仰るような矛盾が生じるのでかけざんを思っていらっしゃるように定義してはいけないことになります。 質問者 お礼 2006/11/30 07:25 >d/dxは高校まででは記号ですから ここらへんが何度問題を解いても腑に落ちないんですよね。 d/dxでひとかたまりだと思うのですが、t・(d/dx)=dt/dxとなって 記号と文字が一緒になったり・・・ あまりに多くがあやふやで、この質問だけでは解決できそうも ないので質問の小出しでひとつずつつぶして行こうと思います。 回答ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 thetas ベストアンサー率48% (27/56) 2006/11/26 04:09 回答No.1 xを微分するd/dxは「d÷(dかけるx)」ではないからです。 理由などこれ以外の関連することは御自分で調べることをお勧めします。 質問者 お礼 2006/11/26 04:15 回答ありがとうございました。 実は過去ログ見てもきっちりとした説明が無かったです。 記号とみるかどうかでの論議で、一応の結論は高校数学では きっちり説明できないみたいです。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分と偏微分の問題です 次の問題が与えられています。 x=a*sin^3t , y=a*cos^3tのとき、dy/dx,d^2y/dx^2、∂y/∂x,∂^2y/∂x^2を求めよ。 まず、微分の方なのですが、xとyをtで微分し、そこから式を進めて、 dy/dx =-1/(sin^2 t) が求まりました。 そして、 d^2y/dx^2 = - 1/3a*cost が求まりました。 これについて、まず、本当に正しいのかを添削してください。 間違っていましたら、ご解説をお願いします。 そして、偏微分についてですが、これはどのように回答していのが正しいのでしょうか。 「偏微分は微分と同じ答えになるので……」と、簡単に書いてしまって良いモノか悩んでいます。 以上、よろしくお願いします。 微分の微分 微分の微分は、 d^2y/dx^2=(dy'/dt)/(dx'/dt)=y''/x' と習ったのですが、 どうして y'' を x'で割らなければいけないのですか? y''を求めるのだから、y'をもう一度微分すればいいのに、 と思うのですが。。。 例えば、x= sin t y=t^2+7t+3 があります。 dy/dx(←実はこれもなん式なのかよく分かっていませんが、、、)は、 y'/x'= (2t+7)/cos t ですよね。 それで、さらに、それを微分したいのですが、 その時に、私は {(2t+7)'*cost-(2t+7)*(cost)'}/(cost)^2 だけで良いと思うのに、本当はそれを x'で割るのですよね。 それで、答えは {2cost+(2t+7)(sint)}/(cost)^3 としなければいけないのが 不思議でたまりません。 解説を宜しくお願いします。 微分についての質問です x^2+y^2=1について(d^2)y/dx^2をもとめよ なんですが 解答は 2x+2ydy/dx=0 dy/dx=-x/y さらに両辺をxについて微分すると (d^2)y/dx^2=(xy'-x'y)/y^2=-1/y^3 だったんですが 私はdy/dx=-x/y さらに両辺をxについて微分すると (d/dx)・(dy/dx)=(d/dx)-x/y で(d^2)y/dx^2=-1/yだと思うんですが yについて微分しないと(xy'-x'y)/y^2にならないとおもうんですがどうしてこのようになるんでしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 簡単な全微分について。 Z=F(X,Y)=αlnX+βlnY を全微分した答えはどうなりますか? ノートに書いてある回答は、 d=(α/X+βlnY)dX+(αlnX+β/Y)dYですが、 私は d=(α/X)dX+(β/Y)dY かな、と思ったのですが。 大文字小文字の使い方がおかしくてすみません: 数III 微分の問題 xy=2について、dy/dxをx,yを用いて表せ。という問題なのですが <自分の答え> y≠0のとき、 x=2/y この両辺をxで微分すると 1=(d/dx)(2/y) 1=(dy/dx)(-2/y^2) ∴dy/dx=-(y^2/2) <模範解答> 両辺をxで微分すると y+(dy/dx)x=0 よって、x≠0のとき dy/dx=-(y/x) というように解答が違います。 でもxy=2から、x≠0のときy=2/xであることは明らかですから、 -(y^2/2)=-{y(2/x)/2}=-(y/x) となりますよね? この場合<自分の答え>も正解ですか? 微分法について 宜しくお願いします。 「微分法」そもそもの意味がわかりません。 というのも、○○で微分する、というのはどう意味かということです。 y=x^2 を「xで微分する」ということと、「yで微分する」ということの違いはなんなのかがわかりません。 xで微分すればもちろんy'=2xなのですが、yで微分するとどうなるのでしょうか。 接線の傾きを表しているという説明は学校で聞きましたし、理解はしましたが本質的な部分がさっぱり理解できておらず、「微分法という操作」ができるだけです。 「微分する」とはどういうことなのか、分かりやすく教えていただければ幸いです。 もともと悩んでいた問題は以下のものです。 yがxの関数で、関係式2x^2+3y^2=6 (y≠0)が成り立つ時、dy/dxを求めよ 回答では d/dx(2x^2)+d/dx(3y^2)=0 4x+6y・dy/dx=0 dy/dx=-2x/3y とありますが、なぜ4x+6y・dy/dx=0のdy/dx部分が残るのかわかりません。 わかりにくく、抽象的な文章で申し訳ありませんが、ご教授お願いいたします。 微分 (d^2)y/(dx^2) 微分で、(d^2)y/(dx^2)っていう表現よく出てきますよね? これについてそもそもなぜ2乗の位置が違うのかって言うのがわからなくなったのですが,,, そもそもdというのはたとえばxで微分したら、微分したののあとにxで微分したことを示すためにdx、yで微分したのならそのあとにdyとかくのですよね? そこから考えたのですが(数学的に正しいかどうかは一切わかりませんが個人的にはこれが一番筋が通りそうな気がしました)、たとえばy=x^3とかで dy=3(x^2)dx d(dy)=D[3(x^2)]dx (d^2)y=6x(dx)dx=6x(dx^2) とつまりdxのまえにxの文字式があればxで微分できるため新しいdxができるが、dyの前にyを含んだ文字がないのでyで微分できないため?といった風に考えました。。。(汗) 正確な解釈を教えてください。あとdxとかの扱い方がいまいちよくわかってないので、上ので間違ってるところの指摘お願いします。 微分方程式に関する問題です。 (x^2){(d^2)y/d(x^2)} - x(dy/dx) + y = x^3 (*) ********************************************************* (1)y = xφ(x)が微分方程式(*)の解であるとき、φのみたす微分方程式を求めよ。 ********************************************************* y = xφ(x)からy' , y''を計算して代入し、 φ''(x) = x/2 となりました。(答えの書き方はこれでいいのか分かりません。) ********************************************************* (2)φ'(x)を求めよ。 ********************************************************* (1)の答えの両辺を積分して φ'(x) = (x^2)/4 + C となりました。 ********************************************************* (3)微分方程式(*)の一般解を求めよ。 ********************************************************* (3)のとき方が分かりません。 どのようにして解いていけばいいのでしょうか? よろしくお願いします。 偏微分の問題です 偏微分の問題です 数学の中間試験の過去問で疑問にぶち当たりました。 u=x+y v=x-2y のとき、du/dx dx/du を求めなさいという問題なのですが、(dは全てラウンドディーです)答えではそれぞれ1と2/3となっています。1つ目の式のyを定数とみてdu/dxが1というのは分かります。また、yに二つ目の式を代入し、変形してから偏微分すると、2/3に確かになります。しかし、一つ目の式をx=u-yと変形してdx/du=1ではダメなのでしょうか。 このように、2つ式が与えられたときに、dx/duまたは、du/dxが何を定数とみなして偏微分するかによって値が異なってしまうとおもいます。上の場合では、xをuとvの式であらわしてvを定数とみなして偏微分する場合と、xをuとyの式であらわしてyを定数とみなして偏微分する場合とでは答えが変わります。 どうしたらいいのか見当もつきません。どうか皆様ご教授ください。 以下問題を添付します。 微分 (d/dx)x^x (X>0) このような問題があったのですが、これを解きたいです。 とくためには、対数微分法を使わないといけないと考えました。しかし、y=の形では、対数微分法をやったことがありますが、(d/dx)このような表示はどのようにやったらいいのですか?教えてください。 数III 微分 微分について、2点わからないことがあるので質問します。 問題1. x^2-y^2=a^2のとき、d^2/y/dx^2をx,yを用いてあらわせ。ただし、aは定数とする。 x^2-y^2=a^2の両辺をxで微分して、2x-2ydy/dx=0より、dy/dx=x/y(y≠0)さらに d^2/y/dx^2=(d/dx)*(dy/dx)・・・(1)として計算することには納得できました。しかし (1)で{1*y-x*(dy/dx)}/y^2 となっているのは、yをxの関数 y=±√(x^2-a^2)として書けるからでしょうか。yが定数にならない理由を教えてください。 問題2.(dy/dx)を求めよ、ただしaは0でない定数とする。 x=a(cost+tsint),y=a(sint-tcost)のとき、 dx/dt=atcost,dy/dt=atsint よって dy/dx=sint/costなぜ,tantにならないのでしょうか。ほかの問題の答えでも、dy/dx=-sinθ/cosθでした。tanθになおさない理由をおしえてください。お願いします。 微分と偏微分の問題です 次の問題が与えられています。 x=a*sin^3t , y=a*cos^3tのとき、dy/dx,d^2y/dx^2、∂y/∂x,∂^2y/∂x^2を求めよ。 まず、微分の方なのですが、xとyをtで微分し、そこから式を進めて、 dy/dx = - sin^3t/cos^3t = -tan^3t が求まりました。 そして、 d^2y/dx^2 = - 1/a*cos^9t が求まりました。 これについて、まず、本当に正しいのかを添削してください。 間違っていましたら、ご解説をお願いします。 そして、偏微分についてですが、これはどのように回答していくのが正しいのでしょうか。 偏微分をよく知らないこともあり、どうやって回答していくべきか悩んでいます。 ご解説をお願いします。 以上、よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分について質問です。 数学IIIでの質問です。 次の式からdy/dxをx及びyを用いて表せ xy=10 という問題なのですが自分は最初、 y=10/xとし dy/dx=10・(-1)/x*2 dy/dx=-10/x*2 これが答えだと思ったのですが回答は 1・y+x・dy/dx=0 dy/dx=-y/x となっています。 これは積の微分公式を使ったということなんですが xyを微分するときでも使えるんですか? それとこのxyを微分するとyになると思うんですがなぜ積の微分公式を使うのですか? 回答お願いします。 微分方程式が解けません どうやっても以下の微分方程式がとけません。どなたかよろしくお願いします (d^2y)/(dx^2)+(d/dx)(y/x)=0 微分 例えばxについての微分で(xy)´ならば、答えは y+xdy/dxですか? 逆関数の微分と全微分の違い 「y=1+x*c^yで定まる陰関数yについてdy/dxを求めよ」という問題の 解き方で、逆関数の微分と全微分のどちらで解けばよいのか分かりません。 私は、f(x,y)=1+x*c^y-y=0とおき、dy/dx=df(x,y)/dx*1/{df(x,y)/dy}で解き dy/dx=c^y/{x*c^y-1}となったのですが、 全微分の解き方をすると、c^y*dx+{x*c^y-1}*dy=0より dy/dx=-c^y/{x*c^y-1}となり、私が出した答えと符合が逆になってしまいます。 この場合どちらの解き方で解けばよいのでしょうか? 見づらいとは思いますが、どうかよろしくお願いいたします。 同次形高階微分方程式について 同次形高階微分方程式について 同次形高階微分方程式の単元を読んでいますと、「y,dy,d2y について同次の場合」とか「x,dx について同次の場合」とあるのですが、式を見てy,dy,d2y について同次なのか、x,dx について同次なのか判断できません。具体的には、 xy(d2y/dx2)-x(dy/dx)^2+y(dy/dx)=0 はy,dy,d2y について2次の同次形で、x^2(d2y/dx2)+x(dy/dx)+y=0 はx,dx について0次の同次形 であるとありますが、どのように判断すればよろしいのでしょうか? 陰関数微分法で、2x/yを微分するとどうして、、 教科書で理解できない箇所がありましたので、教えてください。 dy/dx=2x/y ・・・(1) d²y/dx²=((y)(2)ー(2x)(dy/dx))/y² これに(1)を代入して d²y/dx²=((2yー2x(2x/y))/y²=(2y²-4x²)/y³ になるらしいいんですけど そもそも、なぜdy/dx=2x/yを微分するとd²y/dx²=((y)(2)ー(2x)(dy/dx))/y²になるにか分りません。 どなたか教えていただけませんか? よろしくお願いします 全微分について いつもお世話になっております. この度は次の2つの問題に関して質問させていただきます. 問1 次の連立方程式の全微分をとり,dy/dxを求めなさい. zf(x)+(1-z)g(z)=0 z=yx 問2 方程式ye^(2x)=10について-dy/dxとd/dx(-dy/dx)を求めなさい. 問1に関しては,f(x)とg(z)が与えられていない状況でどう考えて良いのかが全くわかりません.yxf(x)+(1-yx)g(z)=0として全微分すればよいのでしょうか?もしそうだとするならば計算が煩雑になるので,他によい解き方はありませんでしょうか? 問2は全微分を行うと,2ye^(2x)dx+e^(2x)dy=0となり,-dy/dx=2yと求められました.しかし,与式をはじめにy=10e^(-2x)と変形してから微分すると-dy/dx=20e^(-2x)となりました.どうして同じ-dy/dxであるにも関わらず答えが違うのでしょうか? 以上2点,よろしくお願い致します. 微分の記号 YをXで二回微分する記号って、d^2y/dx^2ですよね。 これを書き直したらd/dx{dy/dx}となるはずなので d^2y/(dx)^2になると思うのですが、なぜd^2y/dx^2とかくのでしょうか? くだらない質問なのでヒマな方教えてください 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
>yはxによって決まる値 言われてみればそのとおりですね。 それが正しいことはわかるのですが、なぜそれが 参考書に説明として載っていないのかが理解できませんね。 微積って理解の下で解いていったら楽しそうなんですが、 現在はただの記号クイズって感じで手探り状態です。 回答ありがとうございました。