- ベストアンサー
統計学の仮説検定は両側検定しかありえないのでは?
- 統計学の仮説検定では、両側検定しかありえないのではないかと考えますが、ご意見をお聞かせ下さい。
- 帰無仮説と対立仮説は互いに排反で、かつ2者で標本空間をカバーし尽くせるものでなければなりません。
- 対立仮説を「表が出やすい。P(H)>0.5」とするのであれば、帰無仮説は「P(H)<=0.5」であるべきだと思います。
- みんなの回答 (4)
- 専門家の回答
質問者が選んだベストアンサー
実に仰る通りで、そもそも「対立仮説」なんて変な用語はイラン(帰無仮説の否定、という意味が曖昧になるだけだ)と思っています。 > したがって、表が出る回数(0~10回)の確率分布を得ることができないので、検定できません。 ま、ま、そう結論を急がずに。 「P(H)≦0.5」 という帰無仮説から導かれる予言として、「P(H)=R≦0.5であるコインをN回トスして表が出る度数MがM≧c である確率」Q(R,N,c)を考える。すると、「帰無仮説を満たすコインのうちで、最も表が出易いもの(すなわちP(H)=0.5のコイン)」において「N回トスして表が出る度数MがM≧cである確率」Qmax(N,c)=Q(0.5,N,c)は、任意のR, N, cについて R≦0.5 ⇒ Q(R,N,c)≦Qmax(N,c) を満たすに違いない。つまり、「帰無仮説が正しいなら、そのコインをN回トスして表が出る度数MがM≧c である確率はQmax(N,c)以下だ」と言える訳です。 さて、「コインをN回トスして表が出る度数Mを測る実験をしたところ、危険率pに比べて p > Qmax(N,M)であった」としましょう。するとこれは「任意のRについて、R≦0.5ならば、 p > Qmax(N,M) ≧ Q(R, N,c)」ということだから、結局「p以下の危険率で帰無仮説「P(H)≦0.5」が棄却できる。 というシカケを使えば検定できます。 要するに、「帰無仮説にとって最も都合がいい条件で検定したんだけど、それでも帰無仮説が棄却された」という格好に持ってけば良いんです。
その他の回答 (3)
- alice_44
- ベストアンサー率44% (2109/4759)
帰無仮説 P>0.5 を棄却したら、 結論は P≦0.5 であって P=0.5 じゃあない…という あなたの考えは、正解です。 観測結果が P≧0.5 を強く示唆する ものだった場合、 統計的検定によって P>0.5 を棄却し、 ←[*1] 主観的判断によって P<0.5 を棄却した ←[*2] 結果を総合して、P≒0.5 と結論します。 P<0.5 が論理的または科学的に ありえないから棄却してよい のではありません。 そんなことはアリエナイ(JK風に) と思うから、個人の責任において 棄却すると決めるのです。 主観的を入れたらマズイだろうって? とんでもない。そもそも 有意水準 5 % で棄却するという話は、 確率 5 %未満の事象は偶然では起こるまい …という主観的判断に基いています。 統計的検定というのは、 主観を排除するための手段ではなく、 筋の通った主観的判断をするための 補助手段なのです。 だから、[*2] の判断に [*1] と同程度の信憑性があれば、 片側検定を使うことにも意味があります。
お礼
ご教授頂き,ありがとうございました.片側検定にも意味があることがよく分かりました.御礼申し上げます.
貴方の質問には二つのことが含まれています。 一つは仮説をどう立てるかの話で、もう一つは立てた仮説にたいしてどう検定するかという話です。 まず一つ目について。 > 対立仮説を「表が出やすい。P(H)>0.5」とするのであれば、帰無仮説は「P(H)<=0.5」であるべきだと思います。 「P(H)<0.5」があり得ないということが分かっていれば、 帰無仮説は「P(H)=0.5」 対立仮説は「P(H)>0.5」 で検定することは別におかしいことではないと思いますが、貴方はそれでも 帰無仮説は「P(H)<=0.5」 対立仮説は「P(H)>0.5」 で検定すべきということですか? それとも、「P(H)<0.5」があり得ないとしているのがおかしいいうことでしょうか? 前者の意味であるなら、不要な仮説を入れる意味がないですし、後者なら根拠によりけりと考えます。 二つ目については、数理統計学の検定論を学ぶことをお勧めします。 > したがって、表が出る回数(0~10回)の確率分布を得ることができないので、検定できません。 複合仮説の話ですね。 帰無仮説での全てのP(H)で棄却域に落ちる確率が有意水準以下になるように、対立仮説での全てのP(H)で棄却域に落ちる確率を最大にするような棄却域を設定して検定します。 上の仮説の場合でそういう風に棄却域を決めると、片側検定となります。
お礼
大変わかりやすくご説明頂き,ありがとうございました.ストンと腑に落ち,感動しています.御礼申し上げます.
- Tacosan
- ベストアンサー率23% (3656/15482)
事前知識によって片側検定になることがあります.
お礼
ご教授たいへんありがとうございました.御礼申し上げます.
お礼
理路整然としていて,しかも実感として納得できる御説明頂き,ありがとうございました.本当によく分かりました.御礼申し上げます.