この英文の和訳をお願いします。
The second feature seen from Fig.11 is that the profile of R(e,0) does not depend significantly on r_p (for r_p=0.005 to 0.0002). Only an exception is found near e≒1, but this is, in some sense, a singular point in R(e,0), which appears in a narrow region around e≒1 ( in fact, for e=0.9 and 1.2, there is no appreciable difference between r_p=0.005 and 0.0002). Thus, neglecting such fine structures in R(e,0), we can conclude that R(e,0) does depend very weakly on r_p. In other words, the dependence on r_p of <P(e,0)> is well approximated by that of <P(e,0)>_2B given by Eq. (28).
Now, we will phenomenalogically show what physical quantity is related to the peak at e≒1. We introduce the collisional flux F(e,E) for orbits with e and E, where E is the Jacobi energy given by (see Eq. (15))
E=e^2/2-(3b^2)/8+9/2. (31)
The collisional flux F(e,E) is defined by
F(e,E)=(2/π)∫【‐π→π】p_col(e,i=0, b(E), τ)dτ. (32)
From Eqs. (11) and (31), we obtain
<P(e,0)>=∫F(e,E)dE. (33)
In Fig.12, F(e,E) is plotted as a function of E for the cases of e=0, 0.5, 1.0, and 2.0. We can see from this figure that in the case of e=1 a large fraction of low energy planetesimals contributes to the collisional rate compared to other cases (even to the cases with e<1). In general, in the case of high energy a solution for the three-body problem can be well described by the two-body approximation: in other words, in the case of low energy a large difference would exist between a solution for the three-body problem and that in the two-body approximation. As shown before, this difference appears as an enhancement of the collisional rate. Thereby an enhancement factor peak is formed at e≒1 where a large fraction of low-energy planetesimals contributes to the collisional rate.
よろしくお願いいたします。
お礼
どうもありがとうございました。