ベストアンサー 1辺の長さが2の 2013/02/22 21:22 1辺の長さが2の 正四面体OABCについて OD=aとなる点Dを辺OC上にとる。 線分ADの長さをaを用いて表せ。 教えて下さい! みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー gohtraw ベストアンサー率54% (1630/2965) 2013/02/22 21:43 回答No.1 三角形OADについて、 OAの長さは2、ODの長さはa、OAとODのなす角は60°です。 あとは余弦定理を使うだけ。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) naniwacchi ベストアンサー率47% (942/1970) 2013/02/22 21:44 回答No.2 ん?三角形OAC上で考えれば、 よげん… 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 正四面体におけるベクトルの問題 1辺の長さが1の正四面体OABCにおいて、辺ACを1:2に内分する点をD、辺BCの中点をEとする。 線分OD,OE上にそれぞれ点P,Qをとり、PQ//平面OAB、△OPQ=1/2△ODEを満たすようにし、↑OA=↑a,↑OB=↑b,↑OC=↑cとする。 (1)↑OP,↑OQをそれぞれ↑a,↑b,↑cで表せ (2)点Qから平面OABに下ろした垂線の長さを求めよ (1)からさっぱり手がつきません。どちらかでもいいので回答お願いします。 ベクトルの問題… ベクトルの問題… OA=OB=OC=2 ∠BOC=90°の四面体OABCがある。 △ABCの重心をG 線分OGを3:2に内分する点をD 線分ADと平面OBCとの交点をEとする。→OA=→a →OB=→b →OC=→cとする (1)→ODを→a →b →cを用いて表せ (2)AD:DEを求めよ とあり (1)は1/5(→a+→b+→c) 理解できます しかし(2)が理解できません。 解答↓ →AD=→OE-→OA =-4/5→a+1/5→b+1/5→c →OE=→OA+t→ADとすると →OE=(1-4/5t)→a+1/5t→b+1/5t→c 4点OABCは同じ平面上になく 点Eは平面OBC上にあるから 1-4/5t=0 ゆえにt=5/4 よってAD:DE=4:1 とあるのですが…… 『4点OABCは同じ平面上になく 点Eは平面OBC上にあるから 1-4/5t=0』 の所が分かりません。 解説よろしくお願いします。 正四面体についての問題 4点OABCを頂点とする1辺の長さが8cmの正四面体がある。辺BCの中点をMとし、辺OA上にOD=MDとなるように点Dをとる。このとき次の問いに答えなさい。 (1)線分OMの長さを求めなさい。 (2)三角形OAMの面積を求めなさい。 (3)点Dから線分AMに引いた垂線とAMとの交点をHとするとき、DHの長さを求めなさい。 図がなくてわかりづらいかもしれませんがよろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 空間座標とベクトルの問題です どうしても回答法が分からない問題があります(>_<) 《問題》 四面体OABCがあり,OA⊥OC,OB⊥OC,OA=OC=1,OB=2,cos∠AOB=-1/4である。点Oから辺AB,平面ABCに垂線を下ろし,それらの交点をそれぞれD,Eとする。また,↑OA=↑a,↑OB=↑b,↑OC=↑cとする。 (1)点Dは線分ABを【ア】:【イ】に内分しており,|↑OD|=【ウ】である。また,四面体OABCの体積は【エ】である。 (2)↑OE=【オ】↑a+【カ】↑b+【キ】↑cであり,↑DC=【ク】↑DEであるので,3点D,E,Cは同一直線上にある。 《答え》 ア‥1 イ‥3 ウ‥(√10)/4 エ‥(√15)/12 オ‥6/13 カ‥2/13 キ‥5/13 ク‥13/5 よろしくお願いしますm(_ _)m 辺の長さが2の正四面体OABCを・・・ 1辺の長さが2の正四面体OABCを考える。(以下ベクトル省きます。) △ABCの面積は√3 OG=1/3OA + I/3OB + 1/3OC・・・・(1) (3)(1)式と|OA|=|OB|=|OC|=□、及びOA・OB=OB・OC=OC・OA=□ であることを用いると、 |OG|=□ OG・AB=OG・AC=□ が成り立つことが分かる。 (4)(2)式より正四面体OABCの体積は□となる。 □の部分をお願いします。 数学Bです。 四面体OABCがある。辺AB,OC,それぞれD,Eとし、線分DEの中点をF、線分OFの延長が線分CDと交わる点をGとする。このとき、OF:FGを求めよ。 三角形の辺と角について 三角形の辺と角について 正三角形ABCがあります。このとき角ABCの対辺をabcとします。 点Aから辺BC上の点BCにかかさらないところに線分ADを引きます。 このとき角BCの対辺はどこになるのでしょうか また僕は直線ADが、角BC両方の対辺になると考えたのですが、この場合は角度は一緒にはなりませんよね? 頭こんがらがってきたので質問させていただきます 中学数学図形の問題です 教えてください 一辺の長さが4√3cmの正四面体OABCがある 線分BCの中点をDとして、この立方体を3点O、A、Dを通る平面で切るとき、断面の 面積を求めよ よろしくお願いします 一辺の長さが1の正三角形ABCを底面とする四面体 OABCを考える。た 一辺の長さが1の正三角形ABCを底面とする四面体 OABCを考える。ただし、OA=OB=OC=aであり、a≧1とする。頂点Oから三角形ABCに下ろした垂線をHとする。AHの長さが√3/3になる理由が分かるかた解説おねがいします。 ベクトル 大学受験 よろしくお願いします。 一辺の長さが1の正三角形OABがあり、辺ABを1:2に内分する点をC、線分OCの中点をDとする。Dを通る直線Lが二辺OA, OBと交わるように動くとき、Lと辺OA, OBをの交点をそれぞれPQとする。OP=x, OA=a→, OB=b→とおくとき、OQをxとb→で表せ。 ここで、解答は、 ここで、QはPD上の点であるから、実数tを用いて OQ=tOP + (1-t)ODとあります。 でも、この式がどうして成立しているのかわかりません。 確かにPDQは同一直線状にあるので、OPとODの係数が足して1になるのはわかります。 でもそれなら、OD=tOQ + (1-t)OPとなると思います。そもそもOQをOPとODで表すのがわかりません。どうしてなのでしょうか。 よろしくお願いします。 一辺の長さが1の正三角形ABCを底面とする四面体OABCをかんがえる。 一辺の長さが1の正三角形ABCを底面とする四面体OABCをかんがえる。ただしOA=OB=OC=aであり、a>=1とする。頂点Oから三角形ABCにおろした垂線の足をHとする。AHの長さは3/√3とする。問題 四面体OABCが球Sに内接しているとする。この球Sの半径をrをaを用いてあらわしなさい。解答がr= 2√3a2-1/√3a2です。 解説お願いします。〔解答の2は2じょうということです。〕 ベクトルを教えて下さい。 OA=√2,OB=1である△OABがあり、線分ABを3:2に内分する点をCとする。また、↑OA=↑a,↑OB=↑bとおく。 (1)↑ABを↑a、↑bを用いて表せ。また、↑OCを↑a、↑bを用いて表せ。 (2)OC⊥ABのとき、内績↑a・↑bの値を求めよ。また、このとき|↑OC|、|↑AB|を求めよ。 (3)(2)のとき、辺ABを一辺とする正方形ADEBを直線ABに関して点Oの反対側につくる。線分BEを2:1に内分する点をFとし、直線ODと直線AFの交点をPとする。このとき、↑OFを↑a、↑bを用いて表せ。また、↑OPを↑a、↑bを用いて表せ。 解答を導く手順と解答を教えて下さい。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム ベクトルの問題です。教えてください! 四面体OABCがあり、OA=OB=OC=5、∠AOB=∠BOC=∠COA=90°である。 辺ABを2:1に内分する点をD、辺OCの中点をE、線分DEの中点をFとする。 また、OA=a、OB=b、OC=c(ベクトルは省略させてください。)とする。 また直線AFと三角形OBCとの交点をPとするとき三角形OAPの面積を求めよ。 OPをベクトルで表すまではできたと思うのですが、 三角形の面積をどうやって求めればいいのかが分かりません。 詳しい解き方を教えてください! 数学の問題です 4点O A B Cを頂点とする一辺の長さが8cmの正四面体がある。辺BCの中点をMとし、辺OA上にOD=MDとなるように点Dをとる。この時、1)線分OMの長さは? △OAMの面積は? 点Dから線分AMにひいた垂線とAMとの交点をHと するとき、DHの長さは? ベクトルの問題です。解答よろしくお願いします。 四面体OABCを考えa=OA,b=OB, c=OC(ベクトル)とする。また、線分OA、OB、OCを2対1に内分する点をそれぞれA',B'.C',とし、直線BC'と直線B’Cの交点をD、3点A'、B、C,を通る平面と直線ADとの交点をEとする。 OE(ベクトル)をa, b, c,(ベクトル)で表してください。 至急!!数学ベクトル教えて下さい!! 半径1の円Kに内接する正三角形ABCがあり、線分BCを1:3に外分する点をD、直線ADとKとの交点のうちAと異なる点をEとする。Kの中心をOとし、OA(→)=a(→)、OB(→)=b(→)とするとき 次の問に答えよ。 (1)OC(→)、OD(→)をそれぞれa(→)b(→)を用いて表せ (2)OE(→)をa(→)b(→)を用いて表せ (3)四角形AEBCの面積を求めよ ※ベクトルは、(→)であらわしています。*例*ベクトルOA OA(→) *解答* (1)OC(→)=-a(→)-b(→) OD(→)=1/2a(→)+2b(→) (2)5/7a(→)+8/7b(→) (3)27/28√3 解法がわかりません(><) 明日、みんなの前で解き方を説明しないといけないんです(><) どなたか、解ける方、至急お願いします! ちょっとど忘れで分からないのですが・・ “三角形OABの辺OAの中点をCとし、線分BCを4:3に内分する点をD、線分ODの延長が辺ABと交わる点をE、線分ADの延長が辺OBと交わる点をFとする時、三角形CEFと三角形OABの比を求めよ”というのですが、分からないんです。(昔は解けたような・・・)線分の比とかなくてもとけるものなのでしょうか・・問題のナガレとしては、ODベクトルを求め、OEベクトル、FEベクトルをもとめて、その次の問題なんですが・・・分かる方お願いします。 ベクトルのセンター試験の過去問です。 ベクトルのセンター試験の過去問です。 三角形OABで辺OAを3:2に内分する点をC、辺OBを1:2に内分する点をDとする。 (1)線分ADとBCの交点をP、直線OPと辺ABの交点をQとすると、OPベクトルをOAベクトルとOBベクトルで表せ。またOQベクトルをOPベクトルを使って表せ。 (2)線分AC上に点E、線分BD上に点Fをとり、線分EFが点Pを通るようにする。OEベクトル=αOCベクトル、OFベクトル=βODベクトルとすると、α,βの間には1/?(?/α+?/β)の関係が成り立つ。 (1)はできましたが(2)が分かりません。 よろしくお願いしますm(_ _)m ベクトル 四面体OABCにおいて、辺OAの中心をP、辺BCを2:1に内分する点をQ、辺OCを1:3に内分する点をR、辺ABをs:(1-s)に内分する点をSとする。ただし、0<s<1とする。 (1)PQをa、bおよびcで表せ。 (2)RSをa、b、cおよびsで表せ。 (3)線分PQと線分RSが交わるときのsの値を求めよ。 平面図形 1辺の長さがaの正三角形ABCを底面とし面ABCと面OABが垂直な4面体OABCがある。 Aから辺OCに下ろした垂線の足をDとすると次のように条件が成り立つ OA=OB=b OC=c cos∠ADB=1/3 このとき四面体OABCの体積が√2となる時のa,b,cの値を求めなさい。」について教えてください。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など