ベストアンサー 中学数学 x+y=1 1/x+1/y=-1 x>y 2013/02/06 21:25 中学生です。 下の問題が解けません。 教えて下さい。 よろしくお願いします。 「式1」 x + y = 1 「式2」 1/x + 1/y= -1 「他条件」 x > y みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー guriccho ベストアンサー率53% (16/30) 2013/02/06 22:12 回答No.2 x+y=1…(1) 1/x+1/y=-1…(2) (1)を変形して x=1-y これを(2)に代入する。 1/x+1/(1-x)=-1 分母を通分すると 1/x(x-1)=-1 式を変形すると x^2-x-1=0 x=(1±√5)/2…(3) x>yなので x=(1+√5)/2 (1)に代入して y=(1-√5)/2 質問者 お礼 2013/02/07 07:28 ありがとうございました。 よくわかりました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) info22_ ベストアンサー率67% (2650/3922) 2013/02/06 23:08 回答No.3 x+y=1 ...(1) 1/x+1/y=-1 ...(2) (2)より x+y=-xy (x≠0,y≠0) (1)を代入 1=-xy ...(3) (1)より y=1-x ...(4) (4)を(3)に代入 1=-x+x^2 x^2-x-1=0 (x-(1/2))^2=5/4 x-(1/2)=±√5 x=(1/2)±√5 ...(5) (4)に代入 y=(1-(±√5))/2 ...(6) (5),(6)は複号同順。 条件:x>yより x=(1+2√5)/2,y=(1-√5)/2 ...(答え) 質問者 お礼 2013/02/07 07:32 教えていただきありがとうございました。 複合同順がわからなかったので調べてみました。 更に勉強になりました。 また質問した際もよろしくお願いします。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 noname#175271 2013/02/06 21:55 回答No.1 y=1-x 1/x+1/(1-x)=-1 1=x-x^2 x=(1+√5)/2 y=(1-√5)/2 質問者 お礼 2013/02/07 07:09 ありがとうございました。 3行目から4行目になる箇所がわからないので 勉強してみます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A y''+P(x)y'+Q(x)y=R(x)の解き方 線形微分方程式y''+P(x)y'+Q(x)y=R(x)がx=0においてテイラー展開可能であれば、x=0においてテイラー級数に展開可能な解を持つ。このことを用いて、x=0でy=0, y'=0という条件の下で y''-2xy'/(1-x^2)+6y/(1-x^2)=0 を解くにはどうすればよいでしょうか。 不等式 y≦-2x^2+5x+3 を考える 受験用に演習問題を解いているのですが、(4)が答えを見ても納得できません。-が大きければ大きいほど、小さい数になると思ってたんですが・・・ 解説をどうかよろしくお願いします!! (1)は解の公式で解きました。 (2)は0,1,2,3 の4個ですか? でも、x=0のとき、y=0にならないんですが・・・ (3)は(2)の4つを不等式にいれて、一番yが大きい組み合わせを選びました。 (4)は条件の-2≦x≦4の、(-2)と(4)を不等式に入れて、yを出しました。すると、(-9)と(-15)が出ました。最も大きいものなので、(-9)だと思いましたが、正解は(-15)でした。。。(>_<) でも、(3)で、x=1のときy=6とでているので、最も大きいものは「6」じゃないのか?という疑問も・・・。 問題: 不等式 y≦-2x^2+5x+3 を考える。 (1)この不等式を満たす二つの整数の組(x,y)を考える。 y=0のとき、この不等式を満たす実数xの範囲は -1/2≦x≦3 である。 (2)したがって、この不等式を満たす二つの整数の組(x,y)の中で、y=0のものは 4個ある。 (3)また、この不等式を満たす2つの整数の組(x,y)の中で、yが最も大きくなる組は (1,6) である。 (4)-2≦x≦4を満たすすべての実数xに対してこの不等式が成り立つような実数yを考える。 このようなyの中で最も大きいものは -15 である。 2 x - y を最大にする方法 (x≦y かつ 0≦x+y≦2で) x ≦ y かつ 0 ≦ x + y ≦ 2 という条件の下で ● f = 2 x - y を最大化する x, y を求める方法はないでしょうか? いろいろ試行錯誤をして 「 x = y = 1 が答えらしい」 ということは何となく分かってきたのですが、すっきりと解く方法が分かりません。 よろしくおねがいします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム x-2y+3=0, 2x-y-3=0 x-2y+3=0, 2x-y-3=0 という二つの式があります ここで x-2y+3+k(2x-y-3)=0 が最初にあげた式の交点を通る直線を表すらしいのですが、なぜそう言えるのでしょうか? 回答よろしくお願いします (x-y)^3(x+y)^3 について 新高1になるものです。手引きお願いします。 (x-y)^3(x+y)^3 という式なのですが、 僕は、 (x-y)^3(x+y)^3={(x-y)(x+y)}^3 =(x^2-y^2)^3 =x^8-3x^4y^2+3x^2y^4+y^8 としたのですが、 答えは、x^6-3x^4y^2+3x^2y^4+y^6 でした。 3乗の展開式で何故x^8ではなく、x^6になるのでしょうか? (x^2)^3 ←これがx^6になるのは理解できてますが・・・ 計算してる過程がおかしいのでしょうか? どなたか教えてください。 よろしくお願いします。 (1)x^2+(3y+1)x+(y+4)(2y-3) (1)x^2+(3y+1)x+(y+4)(2y-3) (2)x^2-2xy+y^2-x+y-2 (3)2x^2+5xy+2y^2+4x-y-6 (4)2x^2+5xy-3y^2-x+11y-6 を因数分解するとどうなりますか? 途中式も宜しくお願いします。 中学の数学。∠Xと∠Yの大きさを求めてください。 答えは∠X=107゜、∠Y=31゜です。 以下2点の考え方を使わず、(知らなかったと仮定して)解く方法はありますか?できれば、わかりやすく教えていただけると有り難いです。 1、円に内接する四角形の向かい合う角の和は180゜である。 2、円に内接する四角形の1つの内角は、それに向かい合う内角の、となりにある外角に等しい。 条件があり、申し訳ないのですが、よろしくお願いします。 11x^2+12xy+6y^2=4 のとき、 11x^2+12xy+6y^2=4 のとき、 x^2+y^2の最小値を求めよ。 高校生のレベルでの解答はどうなるでしようか。 領域を考えようとしましたが、わかったところでうまくいかないように おもえる。次に、条件の式の式変形を考えたが、5x^2+(x+y)^2=4程度で この先の目どがたたない。 よろしくお願いします。 X+Y=-2X がX-Y=0になる過程 私立文系の大学を卒業した社会人で、今更ながら基礎からやり直しています。 とても基本的なことですが、 X+Y=2X が X-Y=0となるのは、 下のどちらの手順をとっているのか教えてください。 その1: X+Y-2X=0 -X+Y=0 左辺と右辺をひっくり返して0=X-Y → X-Y=0 その2: X+Y-2X=0 -X+Y=0 両辺に-1をかけてX-Y=0 解き方に加えて、-X+Y=0を見た瞬間にX-Y=0まで思い浮かぶようになるには一体どのようにすれば良いでしょうか。 答えをみるといつもなるほどと思っていたのですが、 上のような式を見たとき、移項して答えを出す方法と、両辺に同じ数を掛けたり割ったりして答えを出す方法の どちらをどのような時に使えばよいか理解できていないことに最近気がつきました。 とても基本的なことで申し訳ないのですが、教えてください。 よろしくお願いします。 この数学の問題がわかりません。 中2です。 この下の2つの問題がわかりません。 詳しくわかりやすく説明お願いします。 ※次の条件を満たす一次関数の式を求めなさい。 (1)x=0のy=-2で、x=4のときy=-6である。 (2)x=2のときy=-3で、x=-2のときy=-1である。 わかりますか? X≧0、Y≧0のとき2X+Y=8が成り立つとする。 XYの最大値と、そ X≧0、Y≧0のとき2X+Y=8が成り立つとする。 XYの最大値と、その時のX,Yの値を求めなさい。 この問題が全然わかりません 回答の途中式で XY=X(-2X+8)になってるんですけど・・・意味がわからない。。。 おしえて!!!ください・・・。。。。。。 "x^2+y^2=(x+y)^2-2xy"??? 対称式についてどうしても納得できないことがあるのですが…。 基本対称式以外の対称式は全て基本対称式のみの式で表されるとのことですが、 その典型的な例である x^2+y^2=(x+y)^2-2xyや x^3+y^3=(x+y)^3-3xy(x+y)というのは^3や3などの基本対称式以外の数字が入っていますよね? これって基本対称式"のみの"式ではないんじゃないんですか? 例えば x^2y+xy^2=xy(x+y)なら基本対称式"のみの"式で表されているよね、と言われても納得できるのですが、上記の二つはいまいち納得できません…。 これはもうそういうものだと割り切った方がいいのでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 中学生の数学問題 親戚の中学生に質問されて、どうしても解けない問題があるのですが(2問)、ご協力ください。 問 次のそれぞれのことを、関数(yをxの式)で表しなさい。 (1)自然数xの約数の個数はyである。 (2)小さい方からx番目の素数はyである。 どうぞ、よろしくお願いします。 x^2+y^2=26 xy=5 の時、y/x (もしくは、x/y)の求め方。 問題.x^2+y^2=26 xy=5 の時、y/x を求めよ。x>y 、x>0、y>0である。(^2は二乗を表します。) 対称式と言うのでしょうか、よく分かりませんが、答えが無くて困っております。どうぞ、お力を貸してください。私はこう解いてみました。 (x+y)^2=x^2+2xy+y^2 なので、それぞれ代入すると (x+y)^2=26+2*5 になります。x+y>0なので x+y=6 になります。ここから、xを移項して y=6-x となり、これを xy=5 に代入します。 x(6-x)=5 となり、れを解くと x^2-6x+5=0 より x=1,5 となります。 x+y=6 なので、y=5,1 になり、x>y なので、x=5 y=1 よって、y/x は 1/5 ここで、質問なのですが、このようにxとyをいちいち求めずに解く方法はあるのでしょうか?(x+y)^2=x^2+2xy+y^2 を使って、x+yを求めるように、何らかの公式を使ったり、x^2+y^2=26 xy=5 の二つの式を変形させたりして、y/x や x/y いっぺんに(xとyを別々に求めることなく)求めることは可能なのでしょうか?どうぞ、よろしくお願いします。 「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小 「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小値と、そのときのx,yの値を求めよ。」という問題を解くと、 解)t=x^2-2xy+2y^2-4x+2y+8 とおき、Xについて整理すると、 =…={x-(y+2)}^2+y^2-2y+4 これより、tは、x=y+2 のとき、最小値y^2-2y+4 をとる。 ここで、g(y)=y^2-2y+4 とおくと、 (省略) と、この後は、g(y)=y^2-2y+4 を平方完成し、最小値を求めていきますが、このtの式の最小値が、 y^2+Z+4となるtの式が有った場合、tの最小値は、以下の3通りのどれでしょうか? (1)y^2+Z+4 → y^2+Z+4 , (2)y^2+Z+4=y^2+(Z+4) より、z+4 , (3)y^2+Z+4=y^2+(Z+4) より、z+4は1次関数なので、最小値はもたない また、y^2+z^2+4となるtの式が有った場合、tの最小値は、 y^2+z^2+4 → y^2+z^2+4=y^2+(z^2+4) より、4 で合っているでしょうか? y=x^(1/2^(1/2))-x (0≦x≦1) のxの最大値とその時のyの値 y=x^(1/2^(1/2))-x (0≦x≦1) のxの最大値とその時のyの値を教えてください。 考え方もお願いします。 式を日本語も交えて書くと y=xのルート1/2乗-x となります。 参考書とかに載っていたものではないで問題に不備があるかも知れませんが、よろしくお願いします。 座標(x,y)から座標(x2,y2)を頂点としてとおり座標(x3,y3)と交わる放物線? 現在プログラムを作成しているのですが、とあるグラフを表示して 欲しいと言われ困っています。 ニーズは 任意の座標(x,y)と座標(x3,y3)を放物線で記すこと。 ただし、この放物線はxからx3の間隔の8:2の場所に頂点(x2,y2)が あること。 です。 すなわち・・・ (x,y)が(0,50)で(x3,y3)が(100,25)なら 頂点(x2,y2)は(80,?)に あるグラフです。 そもそも、こんなグラフを式でかけるんでしょうか? かけるとしたらどんな式で書けばいいのか教えてください。 条件としては 必ず x<=x3 , y>=y3 , xとx3の間隔は最低100です。 いろいろ参考書とか見てみたのですが、ギブアップです。 お助けください。 4x^2-9y^2+28x+49=(2x+3y+7)(2x-3y-7)について 4x^2-9y^2+28x+49 を因数分解しなさいという問題で、解法は 4x^2-9y^2+28x+49 =(4x^2+28x+49)-9y^2 =(2x+7)^2-(3y)^2 =(2x+7+3y)(2x-7-3y) =(2x+3y+7)(2x-3y-7)・・・(答え) ですが、 多項式は次数の多いものからかっこでくくるといいと教えられたので、私はこの解法が思いつかず、 4x^2-9y^2+28x+49 =4x(x+7)-(9y^2-49) =4x(x+7)-(3y+7)(3y-7) とやってしまい、これ以上進まずに躓いてしまいました。 この因数分解はどのような規則から成り立ち、どうすればこの解法が思いつきますか? 座標(x、y)の条件 座標(x、y)の条件 座標(x、y)について 2点A(ー4、0)、B(2,0)からの距離の比が2:1である点の軌跡を求めよ。 条件を満たす点をP(x,y)とするとPA:PB=2:1 ゆえに PA=2PB すなわち PA^2=4PB^2 したがって (x+4)^2+y^=4{(x-2)^2+y^2} 整理して x^2+y^2-8x=0 すなわち (x-4)^2+y^2=4^2・・・(1) よって、条件を満たす点は、円(1)上にある。 逆に、円(1)上の任意の点は、条件を満たす。 したがって、求める軌跡は中心が(4、0)、半径が4の円 教えてほしいところ 軌跡上の動点(x、y)とするとの部分が違和感があります。 普通、y=4の直線とはxy平面上の無数の点(x、y)についての条件式ですよね。 この場合であれば、無数の点のy座標の部分は4であるとy=4はいっています。よってそれを結べばy=4の直線になりますよね。 この場合のyは無数の点のyであり、直線上のyとは考えませんよね。 今回の場合も、軌跡上の動点(x、y)とおいてしまうとおかしいような気がします。 そうしたら、xy平面上の(x、y)とは違う(x、y)をあらわしているので条件として考えられないのでは?? 直線とかは(x、y)という無数の点の条件式と習ってから混乱しました。 誰か、教えてください 不等式を満たす(x,y)の条件 平面上の点(x,y)で、(x/3)^(2n)+(y/2)^(2n)<1 を満たすような自然数nが存在するためのxとyについての必要十分条件は □<x<□かつ□<y<□ である。(早稲田) (x/3)^(2n)>=0,(y/2)^(2n)>=0だから、少なくとも、(x/3)^(2n)<1,よって -3<x<3。 同様に、-2<y<2。これが不等式を満たすための必要条件だと思いますが、 十分条件になることが、示せません。円で考えようとしましたが、かえって領域の包含 関係がわからなくなりました。よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました。 よくわかりました。