(1)
P(X<x)=
N(x,μ,σ^2)=[1/{σ√(2π)}]∫_{-∞~x}(e^[-{(u-μ)^2}/(2σ^2)])du
P(X+c<x)
=P(X<x-c)
=N(x-c,μ,σ^2)
=[1/{σ√(2π)}]∫_{-∞~x-c}(e^[-{(u-μ)^2}/(2σ^2)])du
=[1/{σ√(2π)}]∫_{-∞~x}[e^{-[{v-(c+μ)}^2]/(2σ^2)}]dv
=N(x,μ+c,σ^2)
(2)
P(cX<x)
=P(X<x/c)
=N(x/c,μ,σ^2)
=[1/{σ√(2π)}]∫_{-∞~x/c}(e^[-{(u-μ)^2}/(2σ^2)])du
=[1/{σ√(2π)}]∫_{-∞~x}(e^[-{(v/c-μ)^2}/(2σ^2)]/c)dv
=[1/{cσ√(2π)}]∫_{-∞~x}(e^{-[{(v-cμ)/c}^2]/(2σ^2)})dv
=[1/{cσ√(2π)}]∫_{-∞~x}(e^[-{(v-cμ)^2}/{2(c^2)(σ^2)}])dv
=N(x,cμ,c^2σ^2)
(3)
i=1~2
Xiの特性関数fi(t)は
fi(t)=e^{-[{(σi)^2}(t^2)/2]+itμi}
X1,X2が独立だから
X1+X2の特性関数f(t)は
f(t)
=f1(t)f2(t)
=e^{-[{(σ1)^2}(t^2)/2]+itμ1}e^{-[{(σ2)^2}(t^2)/2]+itμ2}
=e^{-[{(σ1)^2}(t^2)/2]+itμ1-[{(σ2)^2}(t^2)/2]+itμ2}
=e^{-[{(σ1)^2}(t^2)/2]-[{(σ2)^2}(t^2)/2]+itμ1+itμ2}
=e^{-[{(σ1)^2+(σ2)^2}(t^2)/2]+it(μ1+μ2)}
これはN(μ1+μ2,(σ1)^2+(σ2)^2)の特性関数だから
X1+X2はN(μ1+μ2,(σ1)^2+(σ2)^2)に従う