ベストアンサー 確率・統計の問題について 2018/07/20 18:49 画像の問題の解説でX = X1 + X2 + …+X50は漸近的に正規分布N(0, 50/12)に従うと書いてあるところが理解できません。中心極限定理を用いた場合は確率変数はN(μ,σ^2/n)に従うので問題の確率変数XはN(0, 1/600)に従うのではないですか? 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー f272 ベストアンサー率46% (8467/18126) 2018/07/20 21:23 回答No.1 > 中心極限定理を用いた場合は確率変数はN(μ,σ^2/n)に従う これが嘘です。 Xbar=(1/n)ΣXiはN(μ,σ^2/n)に従いますが,X=ΣXiはN(μ,σ^2*n)に従います。 質問者 お礼 2018/07/21 11:53 理解できました、ありがとうございます。 通報する ありがとう 1 カテゴリ 学問・教育数学・算数 関連するQ&A 確率統計の問題 確率密度関数f(X)= 1(0<=X<=1) 0(その他) で与えられている。 Z=Σ(i=1,12)Xi-6 として新しい確率変数Zを定義するとき、Z~N(0,1)と近似できることを中心極限定理によって説明せよ。 という問題です。 私のやり方としては、まずf(X)の平均と分散を求める。 μ=1/2 σ^2=1/12 と求まります。 ここで、Zを変形すると、 Z=(1/√12)*(Σ(i=1,12)(Xi-1/2)/(√1/12)) となり、ここの12をnと置き換えればn→∞のときに Z~N(0,1)と近似できるとわかりますが、 中心極限定理ではn が大きいときに、 Z=(1/√n)*(Σ(i=1,n)(Xi-μ)/(σ)) の分布は標準正規分布でよく近似できるとありますが、 問題文ではn=12であって、これが何を持って大きいといえるのです。 確率統計の初心者ですので、馬鹿な質問になり、申し訳ありません。 わかる方がいらっしゃいましたら、ご教授お願いします! 確率・統計の問題です 以下の問題がよく分らなかったので、解説お願いします 中心極限定理の分野です 実数値の小数第1位を四捨五入するとき、 生じる丸めの誤差Xは確率密度関数f(x)が f(x) = 1 (-0.5 <= x < 0.5) 0 (その他のx) の一様分布に従うとする 100個の実数に対する丸めの誤差X1,X2,...,X100が互いに 独立とするとき、 確立P( |X1+X2+...+X100| <= 5 )の近似値を求めよ X1,X2,...の数字は添え字の意味です よろしくお願いします_ _ 統計学での確率変数Xと観測値xの使い分けについて 全く別物だと思うのですが、理解できなくて質問いたします。 確率変数Xは、その値をとる確率が決まっている変数であり、 観測値xは、ただ実際に出現した値、であることは理解しています。 確率密度関数では横軸が確率変数であり、Pr(X)の値が縦軸である、というのがわかりやすかったです(以下ブログを参考)。 https://bellcurve.jp/statistics/blog/14006.html 1)しかし、この考えでは次のブログのことを理解できませんでした。 http://igakubugakushi.com/ctl1/ 互いに独立であり、同一分布に従う確率変数X1、、、Xnとあります。1つの確率密度関数には、複数の観測値xを決まった確率で取りうる確率変数Xが1つある理解でした。1つの確率密度関数に複数の独立の確率変数があるというのはどういうことでしょうか。 2) また、同じブログの「母集団が正規分布だった場合」 http://igakubugakushi.com/interval-estimation1/ X1~N(μ、σ²) : Xn~N(μ、σ²)とすると、正規分布の再生性により、 x1~+xn~N(nμ,nσ²) よって、x⁻(観測値xの平均)~N(μ,σ²/2) との記述があります。複数の確率密度関数が同じ正規分布に従っている、のは一先ずおいておくとして、そのあとの正規分布を再生する観測値x1~xnは、どの確率分布から出てきたものなのでしょうか? 3)また、2)で出てきた、x1~+xn~N(nμ,nσ²) → x⁻(観測値xの平均)~N(μ,σ²/2) になるのはなぜでしょうか?x⁻~N(μ、σ²)ではないですか?(nで全てを割るのであれば) ただのブログの書き間違えなのか、私がよくわかっていないのかわからず、解説いただきたいです。 統計学での確率変数Xと観測値xの使い分けについて2 確率変数は数量が対応付けられていてある数値になる確率が決まっている変数、と理解しています。確率変数X~N(μ,σ²)ならば、確率変数Xは横軸にあたり、ある変数になる確率が縦軸で表されていて、すなわち、μを平均値として分散σ²の正規分布になる、というイメージでした。また最近、確率変数がX1、X2、、、Xnと存在することがあり、これは同じ確率密度関数から複数回施行して、1回目をX1、二回目をX2にする等すれば有りうるようです(確率変数Xを分解している?)。 以下質問です。次のサイトの、「解放の手順」についてが主な質問です。 http://igakubugakushi.com/mean-difference-t-test1/ 1)②に、正規分布の再生性より確率変数の和X1+X2+、、、+Xn~N(nμ、nσ²)よって、X⁻(確率変数の平均)~N(μ、σ²/n) と記述があります。これは間違っていませんか?正規分布の再生性とは、母集団から一度抽出しているサンプルx1~xnも、正規分布になりますよ、ということですよね。スモールエックス ̄~N(μ、σ²/n)ではないですか? 2)もしくは、同じ②に、 正規母集団N(μ、σ²)から無作為に得られた標本 n 個をX1、X2、X3…Xnのように定めると、正規分布の再生性より確率変数の和 X1+⋯+Xn は N(nμ, nσ21) に従う。 とありますが、X1、X2は標本値と定義するのであれば、そのあとの確率変数の和、という記述はおかしくないですか?ラージエックスは確率変数では既にないと思うのですが。 3)同じページに問題1があり、標本平均X⁻=64.2、とあります。標本平均とあるので、この場合問題ないのですが、なぜスモールエックスで書かないのですか?統計学ではよくあるのですか?単なる間違いですか? 統計学 確率分布の問題 こんにちは。統計学を勉強している者ですが、 次の問題が解けずに困っています。 n個の確率変数 X1, X2, … Xnが、 次の母集団分布からのランダム標本であるとする。 P(X=1)=p , P(X=0)=1-p=q このとき、Y=X1+X2+…+Xnの確率分布を求めよ。 また、Yの平均と分散を求めよ。 という問題です。 Yの確率分布は、P(X=1)が選ばれる回数をkとすると nCk * p^k * q^(n-k) になると思うのですが…。 確率分布と言われると、どう答えてよいのかわかりません。 平均と分散は、この確率分布の答えをもとにして 出せばいいのですか? kやnをどう駆使して算出すればよいのでしょう? 答えの分かる方、詳しく解説してもらえると助かります。 確率の問題が解けません。 次の3問が分かりません。何方か解ける方がいらっしゃったら解説をよろしくお願いします。 [1] 確率密度関数f(x)が f(x) ={c(1 - x ²)} (lxl≤1のとき) ={ 0 } (lxl>1のとき) と与えられている。 1)規格化定数cの値を求めよ。 2)分布関数F(x)を求めよ。 [2]確率変数X₁、X₂、X₃が互いに独立で、標準正規分布N(0,1)に従うとき、確率 Pr{0 ≤ (X₁+X₂+X₃)/ 3 ≤ 0.5} を求めよ。 [3]確率変数X、Yは独立で、それぞれ自由度4のχ²分布、自由度6のχ²分布に従うとき、 Pr( X ≥λY )=0.05 となるλを求めよ。 統計学の問題です。 確率変数X1,・・・,Xnが正規分布N(μ、σ^2)に従うとき、標本平均X=(X1+・・・+Xn)/nは正規分布N(μ、σ^2/n)に従う。母分散10^2の正規母集団から無作為に9個のデータx1,・・・,x9を抽出したところ、x1+・・・+x9=720であった。 このとき、母平均μを信頼係数95%で区間推定した結果は(1)<μ<(2)となる。 答.(1)73.47 (2)86.53 答えはわかっているんですが、導き方がわかりません。 途中式を全てわかりやすく書いていただけるとありがたいです。 中心極限定理について 中心極限定理で理解できないところがあります。 多分、何か勘違いをしているところがあると思うので、分かる方は教えてください。 平均値 μ*,分散 σ2* をもつ,任意の分布に従う乱数列 x1,x2, … ,xnがあるとき,その平均値 ave(xn) = (x1+X2+・・・+xn)/n の確率分布は,n が大きくなるとき,平均値 μ*,分散 σ2* / n である正規分布に収束する。 すなわち, (ave(xn) - μ*)/(σ*/√n) は,n が大きいとき,平均値 0,分散 1 の標準正規分布に従うとみなしてよい。 はどうやって証明するのでしょうか? また、12個の乱数rand()を発生させた場合、分散は12*1/12=1になるようですが、これは中心極限定理から分散がσ2/nの正規分布に近づくという結果(こちらは1/12を12で割っている)に矛盾しているように思うのですが、どこが勘違いしているのでしょうか? よろしくお願い致します。 分布収束の問題 こんにちは。元日ですが、具体的な設定における分布収束の問題についてご質問致します。 nを整数(n>4)、Xを一次元の確率変数、Qを自由度nの逆カイ二乗分布にしたがう確率変数、Cを正の定数とします。また、Xは以下のように構成されているとします。 X~nCQ 【Qにnと定数Cをかけている】 なお、QとXの期待値と分散はそれぞれ以下のようになります。 Qの平均: 1/(n-2) Qの分散: 2/{(n-2)^2×(n-4)} Xの平均: nC/(n-2)【n→∞のときCとなる】 Xの分散: 2×n^2×C^2/{(n-2)^2×(n-4)}【n→∞のとき0となる】 以上の設定において、nを大きくしたとき、√{n}×(X-C)の極限分布と漸近分散を求めたいのですが、√{n}×(X-C)が確率変数列の和という形になっていないので中心極限定理等が使えず、求め方が分からない状況となっています。 nを大きくしたとき、√{n}×(X-C)は分布収束するのでしょうか。また、分布収束する場合は、極限分布はどのように求めたらいいのでしょうか。 よろしくお願い致します。 確率・統計の問題です 以下の問題の解答をお願いします。 連続確率変数Xの累積分布関数はFx(x) = P{X≦x}で与えられる。区間[0, 1]で定義された、二つの独立な確率変数X1, X2の累積分布関数Fx1(x), Fx2(x)が図で与えられるとき、以下の問いに答えよ。 Y=X1+X2とおくと、Yの累積分布関数Fy(y)はX1,X2の結合密度関数f12(x1, x2)を用いて Fy(y) = ∫[-∞→∞] ∫[-∞→y-x1] f12(x1, x2)dx2dx1 で与えられる。このことを利用してYの確率密度関数fy(y)を求め図示せよ。 確率統計で、正規分布についての問題です。 確率変数Xが正規分布N(3,2^2)に従うとき、次の式を満たすλの値を求めよ。 P(|X-3|≧λ)=0.05 よろしくお願いします!絶対値がよくわかんなくて;; 確率、 統計の問題 大量の製品の中から、10個無作為に抽出して、不良品が1個以下なら合格、2個以上なら不合格とする。大量の製品中の不良品の割合をpとする。この製品が合格する確率 という問題なんですが、解説をお願いします。 不良品、良品のp,1-pによる二項分布であることはわかります。大量の製品ということはポアソン分布に帰着するのか、はては中心極限定理を利用すればいいのか、いろいろ悩んだのですが、ド壺にはまった感じで… よろしくお願いします。 加重平均 n個の確率変数X1,X2,...,Xn がN(μ,1)に従うとき X' = (1/n)Σ<1 n>Xi は nが十分大きいときに 正規分布 N(μ,1/n)に従うとみなしていいです(中心極限定理) それでは X' = Σ<1 n> w(i) * Xi ただし Σw(i)=1 (w(i)は数列{w(n)}の第n項) としたとき X'は正規分布に従いますか?? X'の平均はμ,分散Σ(w(i))^2 は分かったので N(μ,Σ(w(i))^2) かと思うのですが、確証がないので アドバイスをいただけないでしょうか。 確率統計の問題 X, Yは標準正規分布に従う独立な確率変数とする。 W = max(|X|, |Y|)とするとき、Wの平均を求めよ。 という問題があるのですが、解き方がわかりません。 P(W <= w) = P(max(|X|, |Y|) <= w) = P(X <= w)P(Y <= w) を計算し、微分してWの確率密度関数を求めればいいかと思ったのですが、 X, Yが標準正規分布に従う変数なので、P(X <= w)を計算することができませんでした。 どのようにすれば答えを導くことができるんでしょうか? 確率統計の問題です。 確率統計の問題で、わからないものがあったので詳しい解説をお願いします。 X,Yは独立な確率変数で、共に指数分布(λ)に従っている。この時、V=max{X,Y},U=min{X,Y}を求めよ。 よろしくお願いします。 確率・統計の問題についての質問です。 問題:「確率変数Xは、平均50、分散9の正規分布に 従うとする。次の条件を満たすCを求めよ。」 ・P(50-C<X<50+C)=99.7% 手持ちの回答では、「Xを標準化した確率変数をZとすると、 Zは標準正規分布に従う、そして今、標準正規分布において 確率が99.7%になるのはZが+-3σの範囲である。 よって、C/σ=3からC=9となる」(σ:標準偏差) ここで私が疑問に持ったのはなぜ?Zの範囲+-3にσを かけるのでしょうか?いま分散が9ということはσは3ですよね? しかし、3のままで式を変形していくと、C=9にはならない と思います。なぜσをつけるのでしょうか? そこのところがわかりません。 どなたか教えてください。 よろしくお願いします<(_ _)>。 [統計学]カイ2乗分布 カイ2乗分布について多くの入門的教科書では、 > 確率変数 X1, X2 が正規分布 N(0,1) に従うとき、 > Y = X1^2 + X2^2 で与えられる確率変数 Y はカイ2乗分布となり、 > 以下の式で表される: > (分布関数) のような説明がなされていると思います。 このとき、X1, X2 が異なる正規分布 N(e1, v1), N(e2, v2) に従う場合には、 そのカイ2乗分布はどのような式で与えられるのでしょうか。 (e = X の平均値, v = X の分散) おそらく簡単すぎるために、説明が省かれているのだろうと思うのですが、 自分にとっては簡単ではありません。 詳しく載っている書籍・ウェブサイトを挙げるだけでも構いませんので、 御教示お願いいたします。 統計学の問題です 次の問題について質問です。。。 「ある測定値は平均10、分散2^2の正規分布に従っている。 3回独立に測定したとき、その平均が9以下になる確率を求めよ。」 です。 この場合、P((X1+X2+X3)/3≦9)=P(X1+X2+X3≦27) としてみたのですが、標準化を使ってどう求めればよいのか さっぱりで。。。 どなたか解説をお願いします。 正規分布の再生性について質問というかあっているか疑問です。(確率・統計 正規分布の再生性について質問というかあっているか疑問です。(確率・統計) 確率変数X、Yは独立、同分布で正規分布N(30,5^2)に従うとき、確率P(25<=X+Y<=65)を求めよという問題なのですが。 自分で解いてみたところ、 確率変数X+Yの確率分布は正規分布N(60,50) :50=(5√2)^2 P(25-60)/5√2<=X+Y-60/5√2<=65-60/5√2) =P(-35/5√2<=X+Y-60/5√2<=5/5√2) =P(-7/√2<=Z<=1/√2) =P(-4.96~<=Z<=0.70~) ↑となったのですが自分の使っているテキストの標準正規分布表には3.09くらいまでしかありません。これって出題ミスではないですか? それとも自分がどこかで間違っているでしょうか? 教えて下さい。 ^2は二乗という意味です>< お願いします 確率変数について 確率変数の問題ができなくて困ってます。4問なんですけど、 (1)確率変数Xは母平均0、母分散1^2の標準正規分布N(0、1^2)に従うとき、上側確率が0、0050となる確率点を示せ。 (2)確率変数Xは母平均1、母分散9の標準正規分布N(,3^2)に従うとき、不等式4<X<7を満たす確率を示せ。 (3)確率変数Xが自由度60のt分布に従うとき、上側確率が0、025となる確率点を示せ。 (4)確率変数Xが自由度9のX^2分布に従うとき、下側確率が0、05となる確率点を示せ。 以上が分かりません。分かる問題だけでも結構なので解る方は、やり方も教えて頂けると嬉しいです。 注目のQ&A 「前置詞」が入った曲といえば? 新幹線で駅弁食べますか? ポテチを毎日3袋ずつ食べています。 優しいモラハラの見抜き方ってあるのか モテる女性の特徴は? 口蓋裂と結婚 らくになりたい 喪女の恋愛、結婚 炭酸水の使い道は キリスト教やユダヤ教は、人殺しは地獄行きですか? カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど
お礼
理解できました、ありがとうございます。