ベストアンサー 六方最密構造がブラベー格子に含まれない理由 2012/07/28 01:43 六方最密構造(hcp)がブラベー格子に含まれない理由をどなたか教えてください。 よろしくお願いします。 みんなの回答 (6) 専門家の回答 質問者が選んだベストアンサー ベストアンサー htms42 ベストアンサー率47% (1120/2361) 2012/07/31 08:36 回答No.6 「六方最密格子がブラベー格子に含まれない」ことがおかしいと思われたのはどうしてでしょう。「立方最密格子がブラベー格子に含まれている」からでしょうか。 ブラベー格子は結晶を「対称性で分類している」ものです。 密度で分類しているのではありません。 密度は対称性の考察の対象にはなりません。 立方最密格子がブラベー格子に含まれているのではありません。 含まれているのは面心立方格子です。その構造の持つ対称性が含まれている理由になっています。 最密構造になっているということが理由ではありません。 六方最密構造の対称性は「六方晶」です。六方晶はブラベー格子の一つです。 「最密」が分類の基準になっていると考えるからおかしくなるのです。 質問者 お礼 2012/07/31 19:39 すみません。テスト期間でなかなかPC開く機会がありませんでした。 ご丁寧にありがとうございました。おかげ様で疑問が解決しました。お礼が大変遅れてしまいすみません。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (5) htms42 ベストアンサー率47% (1120/2361) 2012/07/30 10:17 回答No.5 返事がもらえないのでまだ納得できるところまで行っていないのではないかと考えています。 どこがしっくりいかないのか書いてもらうといいのですが。 回答を書いていて考えました。 結晶構造、ブラベー格子についての解説には抜けているものがあるのではないかということです。初めて読む人が分かるような解説にはなっていないのです。 考察の対象になっている結晶構造は「含まれている原子は全て、並進対称操作で表現出来るものになっている」という前提があります。ある一つの格子点から結晶構造中の他の格子点に行くための操作は3つの基本単位ベクトルa,b,cの整数係数の組み合わせで表されます。(「基本単位ベクトル」という言葉があるのかということについては「?」です。説明のために私が使っている言葉だと考えて下さい。) このような基本単位ベクトルが存在するような結晶構造が「あらかじめ選ばれている」というところの記述が抜けているのです。 このような基本単位ベクトルの作る「単位格子」を「基本単位格子」という(wikiでの表現)ようです。 「基本単位格子に所属する原子の数は1」です。 ブラベー格子の図に出てくる「体心立方」というような単位格子は基本単位格子ではありません。立方体1つ当たり2個の原子が含まれています。従って立方体の3つの辺を表すベクトルは基本単位ベクトルではありません。立方体の2つの辺を表すベクトルと体心にある原子に向かうベクトルの3つをセットにすれば基本単位ベクトルになっります。全ての原子の位置がこの3つのベクトルの整数係数の組み合わせで表現できます。 ブラベー格子に出てくる7つの結晶形というのは「並進対称性が成り立っていることが確認されている結晶」についてのものです。別の対称性を基準にしてまとめ直しているのです。wikiでは回転操作によって分類すると書かれています。その場合、基本単位格子とは異なった平行六面体が出てくるのです。これも混乱の原因になっています。図を見ると並進操作で出てくる平行六面体についての分類であるかのように受け取ってしまいますね。 具体的にある結晶構造が与えられた時に、基本単位ベクトル、基本単位格子はどのようにして決めればいいのでしょうか。例えば、最密構造という結晶構造が与えられた時です。 全ての原子が並進対称性を満たすとします。 ある基準になる原子を選びます。Aoとします。その原子の隣にある3つの原子を選びます。3つとも同一平面上にあってはいけません。どの2つも同一直線上にあってはいけません。距離の近い方から順番に3つです。Aoからこの3つの原子に向かうベクトルが基本単位ベクトルa,b,cになります。他のすべての原子の位置はこの3つのベクトルの整数係数の組み合わせで表されているはずです。もしうまく表すことが出来ない原子があれば初めの「全ての原子が並進対称性を満たす」とした前提が成り立っていないのです。「並進対称性を満たすような部分構造」を探さなければいけません。ブラベー格子を考えるのはこの後のことです。 この作業が必要であるということがどこの説明にもないから行き詰るのです。 立方最密構造にも六方最密構造にも4つの原子の作る正四面体が存在します。最近接の原子の作る構造です。 この正四面体の3つの辺を基本単位ベクトルに選びます。a,b,cとします。 立方最密構造では他のすべての点がこのa、b、cの整数係数の組み合わせで表されます。ところが六方最密構造ではうまくいかないのです。このa,b,cを基本単位ベクトルにすることはできないということです。と同時に正四面体を基本単位格子とするという立場も成り立たなくなっていることになります。 (一種類の原子でできている結晶構造でありながら役割の異なる(等価でない)原子の組があるというのも分かりにくいところですね。) 六方最密構造での繰り返しの単位は底面が正三角形の三角柱です。 底面は原子を正三角形に敷き詰めた構造になっています。この面をAとします。 Aと同じものを少しずらしてAの上に載せたものをBとします。Aの原子の作る三角形のくぼみのところにBの原子が来るように置いています。Bの上にはAと同じものがきます。ABAB・・・となっています。 面に垂直な繰り返しの周期はA-Aの間隔です。 Bを除いてAだけを考える場合でしたらAの中の3つの原子の作る正三角形が繰り返しの基本単位になります。しかしBにある原子まで考えての繰り返しの単位であれば底面Aの原子の数は変わってきます。6個の原子の作る正三角形が繰り返しの基本単位になります。基本単位ベクトルの長さが2倍になったことになります。この三角形の中央には穴が開いています。Aの原子もBの原子も来ない場所があるのです。この穴の位置の繰り返しが繰り返しの単位になります。基本単位ベクトルの長さが2倍になっていますからA面の中にも副格子を作る原子が存在していることになります。 ただ、「六方晶」という対称性はAだけしか考えていない時でもA,B合わせて考えている時でも変わりません。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 htms42 ベストアンサー率47% (1120/2361) 2012/07/28 22:56 回答No.4 #3の補足 >並進対称性が無い=ブラベー格子ではない 結晶である限り「並進対称性」は存在します。 ブラベー格子はその対称性を手掛かり結晶を分類したものです。 結晶である限りどれかのブラベー格子に当てはまるのです。 六方最密格子がそのままではブラベー格子の分類の中に入って来ないのは 六方最密格子に含まれている全原子を表すような並進対称性の基準ベクトルが存在しないからです。ABABAB・・・と正三角形を基本構造とする2つの平面を交互に積み重ねて行った時のAAAAという構造がブラベー格子の分類の対象となる構造です。それが六方晶です。Bは副格子を作ります。 六方晶に当てはまるのですからブラベー格子が存在しないのではありません。 NaClの構造はブラベー格子には含まれていません。 Na^+だけ、またはCl^-だけについてみると面心立方格子に当てはまります。 面心立方格子はブラベー格子の分類の中に出てくる構造です。 Na^+の作る格子を主だとするとCl^-の作る格子は副です。 原子の種類が異なるので区別するのは当然だと思われるかもしれません。 でも同じ種類の原子を主と副に分けるという例もあるはずです。 かなりややこしいですがダイヤモンドの構造を見て下さい。原子の種類は1つです。立方晶系に含まれていますが立方体1つ当たりの原子数はかなり大きい数字です。副格子のない面心立方格子であれば立方体1つ当たりの原子数は4です。従って4よりも大きい数字になれば副格子が存在します。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 htms42 ベストアンサー率47% (1120/2361) 2012/07/28 20:36 回答No.3 #2です。 補足です。 >ベクトルcでC'にある球の位置を表すことはできません。 「出来ない」と書きましたが説明が必要だろうと思います。 空間の任意の点は一時独立な3つのベクトルが与えられれば表すことができます。 ここで「出来ない」と言ったのは並進対称性を表すような表現が出来ないという意味です。 係数が整数になるような表現です。 並進対称性を満たすような基準ベクトルとそのベクトルで表現できる格子点の配置は連動しています。 A,B,A,B、・・・と球(格子点)を配置させた時、A1B1を表すベクトルcとA面内でのA1A2,A1A3を表すベクトルa,bで表すことができるかを考えます。 初めのA1の真上にくるAをA'1とします。A1A'1=2c-(2/3)(a+b)ですから整数係数という条件に合いません。これはcを基準のベクトルとすることが出来ないということと同時にB面内の点は基本格子を作る格子点ではあり得ないということにもなります。 AもBも同じ原子でできていて区別がないように見えますが結晶の対称性ということから言うとA,Bは異なる原子でできているというのと同じ扱いになるのです。 もしこれがABCABC・・・の場合だとA1の真上にあるA'1へはA1A'1=2c-(a+b)というベクトルで移動することが出来ますのでa,b,cが並進の対称性を表す基準のベクトルであるとすることができるのです。 あちこちブラベー格子についてのサイトを見てみましたがBが副格子になるという説明のあるものは見つかりませんでした。 質問者 補足 2012/07/28 21:01 回答ありがとうございます。 つまりは・・・ 並進対称性が無い=ブラベー格子ではない ということなのですか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 htms42 ベストアンサー率47% (1120/2361) 2012/07/28 10:19 回答No.2 六方最密構造と立方最密構造は全く別の構造です。 球を平面にぴったりとくっつけて並べます。 正三角形を基本とする構造ができます。 この平面は60°に開いた2つの長さの等しいベクトルa,bで表現できます。 平面内での並進対称性を表す基本ベクトルになります。 この面をAとします。 Aの上に同じ面を積み重ねます。この面をBとします。 Aの球の作る正三角形の中央にBの球が来るように載せます。 Aの3つの球とBの1つの球で正四面体を作ることになります。 Aの球からその上に乗っかっているBの球に行くベクトルをcとします。 a,b,cは正四面体の3つの辺に沿ったベクトルです。 Aにある球A1をこのベクトルa,b,cだけ移動させれば 正四面体の他の3つの頂点にある球A2,A3,B1に行くことができます。 A1を2つのベクトルa、bの和で表されるベクトルで移動させた時の球をA4とします。 A1A2A3A4は角度60°、120°の菱形になっています。 Bの上にAと同じ構造の面を載せます。Cとします。 Cの載せ方には2つの方法があります。 (1)A1→B1への移動はベクトルcで表されました。B1→C1がやはりcで表されるような載せ方です。 この時C1はA2,A3,A4の作る正三角形の重心の真上にきます。 このような載せ方を繰り返します。4枚目Dの球はすべて元のAの真上にきます。 Aに戻ったということです。普通これをA、B、C、A、B、C、・・・と表します。 3つのベクトルa,b,cで全ての球の位置を表すことが出来ています。 この3つの基本並進ベクトルは立方体の頂点から面心に引いたベクトルと同じになります。 (2)Cにある球がすべてAにある球の真上にあるように置くこともできます。その場合をC'とします。 この場合、C’はAと同じになりますからA,B,A,B,・・・と表します。 ベクトルcでC'にある球の位置を表すことはできません。 A1からB1に行くベクトルでB1からC'1に行くための移動を表現出来ないのですから ベクトルcは基本並進ベクトルではありません。Bは副格子扱いとなります。 その場合、基本格子は正四面体ではなくて正三角柱です。 (三角柱の体心の位置に別の球が存在している構造です。) A,B,Aの繰り返しのA-Aに対応するベクトルが基本並進ベクトルです。 これはブラベー格子で言うと六方晶です。 六方最密構造という名前の六方です。 ブラベー格子は基本対象操作(並進、回転、反転、鏡映)だけで実現可能な構造です。 http://ja.wikipedia.org/wiki/%E7%B5%90%E6%99%B6%E6%A7%8B%E9%80%A0 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 shintaro-2 ベストアンサー率36% (2266/6245) 2012/07/28 07:28 回答No.1 原子の区別をしない場合、 六方細密は立方細密格子を違う角度から見た場合と同じだから。 参考URL: http://www.b.dendai.ac.jp/~physchem/member/ru_i.ke/etc/hiddenfcc.pdf 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育自然科学物理学 関連するQ&A 立方最密格子と六方最密格子の違い href=http://www.tg.rim.or.jp/~kanai/chemist/chemlab/cry01.htm ↑ここのページを見ると、立方最密格子は、六方最密格子を斜めに切ったらできると書いてあります。 つまりは 立方最密格子=六方最密格子 ということですよね? しかしながら、金、銀、銅は立方最密格子、亜鉛、マグネシウムは六方最密格子という風に区別がなされているのはなぜでしょうか? 簡単な回答でいいので御願いします。 六方最密構造について 次のURLの6ページ、金属の六方最密構造についての質問です。 http://www.cis.kit.ac.jp/~morita/jp/class/EngMats/2.pdf (1) 近接原子間距離を求めるために、a/√3となっている個所がありますが、 これはなぜこの値になるのでしょうか。私の計算だと画像のようになってしまいます。 どこが間違っているのか教えてください。 (2) そして、どうしてここが近接原子間距離なのですか。 (3) 六方最密構造の単位格子の体積の求め方を教えてください。 よろしくお願いいたします。 六方最密構造における単位格子の高さの求め方 六方最密構造における単位格子の高さの求め方を教えてください。 http://www.keirinkan.com/kori/kori_chemistry/kori_chemistry_2/contents/ch-2/1-bu/1-1-3.htm 高さの求め方について上記URLで解説されているので読んでみました。 しかし、図(C)の単位格子の断面図に(2√3r)/3と(4√3r)/3という値がありますが、 なぜこのように1:2の関係にあるのかがわかりません。 どなたか解説をお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 六方最密構造の分子数 原子間距離が1nmの六方最密構造の金属が銅板上に吸着したときの1cm2中の分子数は?? という問題で、答えが「10^14」となっています。 1cm上の分子数は10~7だと思うので正方格子なら納得なのですが、六方最密だともっと複雑になるのでは?? と思うのですが・・・・ どなたか教えてください。 最密六方格子ー逆格子 最密六方格子の実格子および逆格子における基本並進ベクトルを記述せよ。また、それぞれの体積、空間充填率、単位胞中の原子数を求めよ。 格子定数:a この問題を教えてください。 実格子についてはわかったんですが、逆格子についてが分かりません。 面心立方格子 体心立方格子 六方最密構造 金属原子の配列が面心立方格子になるか、体心立方格子になるか、六方最密構造になるかは、どのようにして決まるのですか。 参考書には例が挙げられているのですが、丸暗記ではなく、自分で判断できるようになりたいです。 ご教授よろしくお願いします。高校生レベルの説明をお願いします。 六方最密格子の充填率の求め方 六方最密格子の充填率の求め方が分りません。今分っているのは面心立方格子と同じ0.74となることくらいです。 立方格子の場合は、原子を半径rの球体と考えて立方体の体積をrの式で求め、立方体内に含まれる原子の体積を求め、充填率を出しました。 六方の場合は…、同じようにやれると思うのですが、六角柱の体積をどう求めたらいいのか分りませんし、原子も一つがどれだけ立体内にあるのかも想像しにくいです。 解き方分る方ご教授願います。 六方最密充填構造(HCP)のミラー指数 六方最密充填構造の<100>面はどこを指してるのかわかる方いらっしゃいますか?よろしくお願いいたします。 金属結晶の構造について 高校化学で金属結晶は面心立方格子・体心立方格子・六方最密構造をとり、Al,Cu,Agなどが面心、Na,K,Feなどが体心、Mg,Znなどが六方最密の構造であると学習すると思います。 どのような理由(原因)などから、金属の結晶が面心立方格子になったり、体心立方格子あるいは六方最密構造になるのでしょうか?(例えば、なぜAlは面心で、Naは体心で、Mgは六方最密なのか?) お手数ですが、教えて頂けませんでしょうか? 六方最密格子と、その性質について 六方最密格子の充填方法を取った時、1つの球と球の距離(最近接原子間距離=R)が1の場合、、 その真ん中の球NからRが1の時は12個の球と隣り合っています。(合ってますか?違ってたら訂正して下さい。) つまり、R=1のときは12個です。 この時、Rが2,3,4,5、6・・・となっていった時、 中心にある原子から、等距離にある原子の数は どう変化していくか、数式を教えて下さい。 (数式がなければ、R=15位まで、等距離の球の数をひたすら書いていってくださると嬉しいです。) 私は、コレが 「角度」とか「物理学の各種方程式」と深く関わっている可能性もあると思っています。 よろしくお願いします。 イオンの最密充てん構造について イオンの六方最密充てん構造及び立方最密充てん構造とはどのようなものか教えてください。 結晶:六方(最密)充填構造の解析方法 結晶格子の一つ、六方(最密)充填構造の解析方法を教えてください。 お願いします。 一般的に金属のような硬い物質がとりやすい構造であることなど、wiki等で調べてはみたのですが、いまいち構造解析方法が分かりません。 X線解析だけで判断できるものなのでしょうか? 一般的な金属以外、例えばSi系や有機化合物でもこの構造を形成するのでしょうか? するとしたらどのような条件で、どのような解析方法があるのですか? どなたかご教授ください。よろしくおねがいします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム ブラベー格子... 基本並進ベクトルで表せれる平行六面体が単位格子で、これの積み重ねによって結晶空間は埋め尽くすことができるのはわかりました。 それとブラベー格子との関係がはっきりしません。 参考書を読んでいると、単位格子のとり方は14通りしかなくこの14種類をブラベー格子というと、とらえていますがなにか違う気がします。 どう理解すればいいのか教えてください。お願いします。 fccとhcp 最密格子 以前最密格子であるfcpとhcpをとる原子にはs軌道がうまったものがよいと聞きました。これは等方的な電子配置をとるため結合に異方性がないためどこからでも他の原子が近づきやすいと。 では、fcpをとる原子とhcpをとる原子の傾向に違いというのはあるのでしょうか? 六方最密構造 参考書などに載っている六方最密構造の絵では、原子が1)~3)のように配置されています。 1)正六角形柱の上面の頂点に6個、中心に1個、 2)正六角形柱の真ん中に3個、 3)正六角形柱の底面は、上面と同様に「頂点に6個、中心に1個」 しかし、添付した画像のような図を見ると、正六角形柱の側面の中央には、黄色の1/2の球面が存在しそれが六面にあります。つまり、正六角形柱の真ん中に1/2球の原子が6個あります。しかし、実際には上記2)のように正六角形柱の真ん中に3個です。 なぜ、添付した画像のようになるのでしょうか? どの原子もFCC・BCC・六方最密になり得るのでしょうか?? どの原子もFCC・BCC・六方最密になり得るのでしょうか?? 今晩は,質問させていただきます.どうぞよろしくお願いいたします. どの種類の原子でもFCC・BCC・六方最密構造をとれるものなのでございましょうか?? (鉄につきましては下のアドレスに、FCC・BCCができるようなご説明がいただけておりましたが。。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1226784462) 化学は苦手でございますが最近、原子の話に面白みを感じていろいろ調べております。。。 アドバイスいただけると幸いでございます。もしお詳しい方がいらっしゃいましたら, どうぞよろしくお願いいたします。 最密六方格子のすべり方向のミラー指数が某教科書に[-12-10]と記載 最密六方格子のすべり方向のミラー指数が某教科書に[-12-10]と記載してありましたが、これは[0100]じゃだめなのでしょうか? 回答お願いします。 なぜ、立方最密は六方精密より柔かいのですか? タイトルの通りです。 なぜ、立方最密(銅や金)は六方精密(亜鉛やチタン)より柔かいのですか? 面心立方格子の配位数について 配位数とは1つの粒子に隣接するほかの粒子の数だと聞きました。 体心立方格子については理解したのですが、面心立方格子と六方最密構造の配位数が何故12になるのかがわかりません。 教えてください。 立方最密充填 六方最密充填の結晶構造を、異なる切断面で切断して取り出した立方体は、立方最密充填になるように思えるのですが、本当でしょうか。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
すみません。テスト期間でなかなかPC開く機会がありませんでした。 ご丁寧にありがとうございました。おかげ様で疑問が解決しました。お礼が大変遅れてしまいすみません。