• ベストアンサー

蝶番のモーメント

鉛直な壁面上の蝶番Oの周りに自由に回転できる質量mで長さlの棒がある 棒は60゜傾き先端を水平な糸で壁と結ばれている 糸の張力Tと、棒がOから受ける力の大きさFと向きを求めよ 向きはFと壁の間の角をθとしてtanθになる 張力Tを棒に平行と垂直な方の力に分解したとき、棒に平行な力はTsin60゜らしいのですが何故でしょうか? 図を書いてみましたがどう見ても平行な力はTcos60゜になっています 教えてください!

この投稿のマルチメディアは削除されているためご覧いただけません。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.3

図からはどう見ても Tcos(棒と糸の角度) です。 棒と壁の角度 = 90度-(棒と糸の角度) なので、 Tsin(棒と壁の角度)

noname#155810
質問者

お礼

ようやく分かりました ありがとうございました!

その他の回答 (2)

回答No.2

比率の問題だからどこで絵を作ってもよいのですが、 三角形ABCはお嫌いですか? だいたい分力の話をする場合、もう少し極端な角度にしたほうが 図を描いた場合よくわかります。 たとえば、15度と75度の組み合わせとか。 この例では、糸の向きと棒の向きが近い(45度より小さい)ですね。 だとすると、棒に入る軸力は張力に近い値になるはずです。 (角度が小さくなるほど値は近くなります) とすると張力T×αは、45度の場合の√2/2=0.707・・・より大きな 値になるはずです。 cos60°=0.5 sin60°=√3/2=0.86・・・ ですから、cos60°はあり得ないのですよ。

noname#155810
質問者

補足

すみません 軸力とはなんですか? 教えてください!

回答No.1

張力Tを棒に平行・垂直な力に分解するとために、糸が壁についているところ(A点とする) から棒の方向と平行に直線を引きます。 棒と糸の取りついている点(B点とする)から今引いた線に垂線を下します。 垂線の足、つまり交点をC点とします 張力Tの棒と平行な成分は、(AB)を点Aと点Bの距離、(AC)を点Aと点Bの距離とすれば T×(AC)/(AB) となります。 ∠CBA=60°なので、(AC)/(AB)=sin60° ですから、棒に平行な力はTsin60°で正しいです。

noname#155810
質問者

補足

B点から棒と水平の、棒の方向のベクトルとそれに垂直なベクトルではないんですか? 何故でしょうか!

関連するQ&A