• ベストアンサー

ちょうつがいのモーメント

鉛直な壁面上の蝶番Oの周りに自由に回転できる質量mで長さlの棒がある 棒は60゜傾き先端を水平な糸で壁と結ばれている 糸の張力Tと、棒がOから受ける力の大きさFと向きを求めよ 向きはFと壁の間の角をθとしてtanθになる 左右の釣り合いより、Fsinθ=T 上下の釣り合いより、Fcosθ=T というのは分かったのですが点Oの回りのモーメントがどうなるかがわかりません 特に張力の棒に垂直な成分がわかりません 教えてください!

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

>左右の釣り合いより、Fsinθ=T >上下の釣り合いより、Fcosθ=T ???? 明らかに間違いなので無視します。 蝶番と棒の先端の高さの差 h = lcos60度 = (1/2)l 蝶番と棒の重心との水平方向の差 = lsin60度/2 = (√(3)/4)l 蝶番へのトルクは釣り合うので、つまり、蝶番に対する 糸の張力のトルクと重力のトルクは反対向きで同じになるので (1/2)lT = (√(3)/4)lmg → T = (√(3)/2)mg これで糸の張力が求まりました。次は力 F ですが、 蝶番にかかる力の上成分を FUP, 蝶番にかかる力の左成分を FL とすると、棒は落ちずに止まっているので FUP = mg, FL = T = (√(3)/2)mg F の大きさ = √(FUP^2 * FL^2) = √(3/4 + 1)mg = (√(7)/2)mg F の向き = FUP/FL = (√(3)/2) = tanα →α = 40,9度(水平に対する角度) #Fの方向と棒の方向が異なることに注意!

noname#155810
質問者

補足

>>左右の釣り合いより、Fsinθ=T >上下の釣り合いより、Fcosθ=T ???? 明らかに間違いなので無視します。 失礼しました 上下の釣り合いはFcosθ=mgです ところで、トルクとはなんですか?Wikipediaは系とか難しいことが書いてあってよく分からないです 教えてください!

その他の回答 (3)

回答No.4

>問題文に「Fと壁の間の角をθとして」とあるのですが、 >これは壁と力の角度βと同じじゃないのですか? あ、そうか、途中から θと棒の向きがごっちゃになっていました。 申し訳ない。 そうすると、答えは同じですが、記号を変えて T = (√(3)/2)mg F= (√(7)/2)mg θ=40.9度

noname#155810
質問者

お礼

解決はしませんでしたが、長い間ありがとうございました!

noname#155810
質問者

補足

あってたんですね 分かりました! 質問を繰り返して申し訳ないのですが、No.1の 「蝶番と棒の先端の高さの差 h = lcos60度 = (1/2)l 蝶番と棒の重心との水平方向の差 = lsin60度/2 = (√(3)/4)l」 で、何故張力のモーメントを求めるのに鉛直の差を使って、重力のモーメントを求めるのに水平の差を使っているのでしょうか? 教えてください!

回答No.3

>左右の釣り合いより、Fsinθ=T >上下の釣り合いより、Fcosθ=mg >これ間違いなんですか?答えにこう書いてあるんですけど・・・ うーん、可能性としては二つ。 1) θは誤りで、壁と力の角度βで水平と垂直の分力を表現している。つまり 左右の釣り合いより、Fsinβ=T = 私の回答の FL 上下の釣り合いより、Fcosβ=mg= 私の回答の FUP 2) 実は棒の重さは0で先端に錘がついている。これなら棒の方向=Fの方向になります。

noname#155810
質問者

補足

問題文に「Fと壁の間の角をθとして」とあるのですが、これは壁と力の角度βと同じじゃないのですか?

回答No.2

>F の向き = FUP/FL = (√(3)/2) = tanα →α = 40,9度(水平に対する角度) あ~、間違ってました。 F の向き = FUP/FL = 2/√(3) = tanα →α = 49,1度(水平に対する角度) >上下の釣り合いはFcosθ=mgです これも間違いです。Fの方向と棒の方向は別に考えないとダメなはず。 同じにするにはなんらかの根拠が必要です。 >ところで、トルクとはなんですか 力のモーメント

noname#155810
質問者

補足

左右の釣り合いより、Fsinθ=T 上下の釣り合いより、Fcosθ=mg これ間違いなんですか?答えにこう書いてあるんですけど・・・ トルクについては分かりました ありがとうございました