変数と定数
tがt>0の範囲を動く
直線y=2tx-t^2が通りうる領域を求めよ。
という問題で、解答は
「この直線が(Xo,Yo)を通り得るための条件は、
Yo=2tXo-t^2を満たす正のtが存在することである。
故にx,yを定数とみなし、tについての方程式
y=2tx-t^2
すなわちt^2-2xt+y=0がt>0の範囲に少なくとも1つの解をもつ条件(x,y)を求めればよい。・・・」
となっています。
ここで疑問があります。
XoとYoは色々な値をとる、つまり変数であるのに、これをx,yと置き換え、しかもxとyは定数とみなしています。
普通、変数を定数とみなせば、最後に定数を変数に戻して色々議論して解答終了、となりますよね?なのに、参考書ではそこのところの議論がなされていません(もし議論をするとしたらどんな議論になるのかもわからないですが・・・)。
例えばf(x)=x^2-2ax+1の最小値m(a)を求めよ。という問題ならば、このときはaを定数とみなしますよね。で、m(a)の最小値を求めろ、と言われれば今度はaを動かしますよね・・・。
で、ここまで書いていて自分でも混乱してきたのですが、要するに、変数を定数にみなせば後で議論しなきゃならない(はず)なのに、何で最初に挙げた問題では後でその議論をしていないのでしょうか。変数を勝手に定数とみなして、そのまま終わっていいのでしょうか。
回答よろしくお願いします。
(多分今日のうちに回答への返事はできませんが、明日か明後日にでも回答を見て回答のお礼をさせて頂こうと思います。)