締切済み ベクトルの内積 2011/07/23 18:30 ベクトルの内積とは図形的に何を表しているのでしょうか? みんなの回答 (4) 専門家の回答 みんなの回答 BookerL ベストアンサー率52% (599/1132) 2011/07/24 09:59 回答No.4 #1です。 他の回答者からのご指摘通り、#1の回答は外積との勘違いでした。m(_ _)m ベクトルAとベクトルBの内積は、ベクトルAのベクトルB方向の成分を取り、そのB方向成分とベクトルBの大きさとの積です。 ベクトルAとベクトルBの向きが同じなら、内積は単にそれらの大きさの積になります。 ベクトルAとベクトルBの向きが90°違っていたら、ベクトルAのベクトルB方向の成分は 0 になるので、内積は 0 になります。つまり、 ベクトルAとベクトルB方向の向きが90°←→ ベクトルAのベクトルBの内積が0 という関係になります。 ベクトルAとベクトルBの向きが180°違っていたら、内積はそれらの大きさの積にマイナスをつけたものになります。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 info22_ ベストアンサー率67% (2650/3922) 2011/07/24 02:26 回答No.3 一方のベクトルAの”他方のベクトルBに平行な”成分を出して、それをベクトルBに掛けたものです。 内積の例、 力のベクトルと物体の移動量ベクトルの内積は仕事になります。 交流回路の電圧(実効値)のベクトル(フェイザー)と電流(実効値)のベクトル(フェイザー)の内積は実効電力になります。 参考までに、 ベクトルの外積の大きさ(絶対値)は、2つのベクトルの作る平行四辺形の面積になります。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 noname#152422 2011/07/23 22:22 回答No.2 1番は外積と勘違いしているようです。 aとbの内積の一つの解釈は、aのモノサシを使って、bのaの向きへの長さ(aの長さの何倍か)を測り、それをaの長さ倍にしたものです。 図形的というのとは違いますが、力と変位の内積を仕事とみるのも一つの解釈です。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 BookerL ベストアンサー率52% (599/1132) 2011/07/23 20:43 回答No.1 二つのベクトルを2辺とする平行四辺形の面積になります。 http://www.deqnotes.net/acmicpc/2d_geometry/products 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A ベクトルと内積 2つのベクトルの垂直条件を求めるとき、内積=→0(零ベクトル)とするのは間違いですか?また、内積を計算するときは、•(ドット)を省略せずに書いた方がいいですか? ベクトルの内積 ベクトルの内積を勉強していて、ふと思ったのですが、 ベクトルの内積計算において、 3つのベクトルをかけることはできるのでしょうか? ベクトルA,B,Cにおいて A・B = |A|・|B|COSθ となるのと同じように A・B・C =? これもどうにかして計算することはできるのでしょうか? ベクトルの内積って何? 角A=90度 AB=5 AC=4 の三角形において次の内積をもとめよ。 というばあいベクトルBA・BC=絶対値のベクトルlBAl・lBClcosαという感じになりますよね。 けど、別の問題では、次のベクトルa,bの内積と、sのなす角θ(0度≦θ≦180度)を求めよ。 ベクトルa=(-1,1) b=(√3 - 1,√3 +1) という問題では内積は、ベクトルa・b=2 となっています。 コサインはいらないのでしょうか・・・? 成分表示をされてるときはいらないのかな・・・とおもいました。 高3なのですが・・・。あまり深い知識はいらないのですが、この2つの何が違うのか?考え方を教えていただけたらと思います。お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ベクトルの内積と面積 ベクトルの内積ってありますよね? ベクトルの内積はその二つのベクトルの終点同士を 直線で結んでできた三角形の面積となるんでしょうか? 授業で聞いたようなそうでなかったようなうろ覚えで・・・ 調べてみましたがθ=90°のときは内積が0で成り立ちませんでしたが、 θ=60°のときは成り立ちました。 ベクトルの内積 2つのベクトルの成す角を求めたいのですが、納得できる数値が得られず困っています。 ベクトルの内積の定義はA・B=|A||B|cosΘと理解しており、ここからcosΘを求めます。 ベクトルA(1,1,0)、ベクトルB(1,1,1)とした場合、二つの成す角は45度だと思うのですが内積の計算からはcosΘ=1/√2とはなりません。cosΘ=2/√6になりますので45度ではないという結果になります。 何故、そうなるのか納得できません。ここが納得できないと次のステップに進めません。 非常に稚拙な質問だと思いますが、どなたか教えてくださいませんでしょうか。よろしくお願いします。 ベクトルの内積 AB=1、BC=√5、CA=√2の時、 ベクトルAB→、AC→の内積AB→×AC→の値を求めよ。 内積の公式が使えないのはわかるのですが、その後がわかりません。解の導き方を教えて頂けませんか。 ベクトルの内積に決まりはあるのでしょうか? こんばんは。 ベクトルの問題を解いていて、 問題 点Oを位置ベクトルの基準とし、2点A(a→)、B(b→)によって決まる次の図形ベクトルの方程式を求めよ。ただし3点O、A、Bは異なる点で、一直線上に無いものとする。 (1)点Oを中心とし、点Aを通る円の、点Aにおける接線 解答 求める接線上の任意の点をP(p→)とすると、点Aを通り、OA→が法線ベクトルである直線だから、OA→・AP→=0 a→・(p→-a→)=0 という問題なのですが、解答で内積を使っていて、 OA→・AP→=0とありますが、これは始点や、ベクトルの向きにこだわりがあるのでしょうか? AO→・AP→=0、というように始点をそろえると答えがかわってしまいますよね。。。 よろしくおねがいします!!! ベクトルの内積の記号 2つのベクトルの内積の標記の仕方で, 成分での標記が教科書に載っていませんが, (1,2)・(2,3)=2+6=8 というように成分表示された2つのベクトルの内積を このようにかいてもいいのでしょうか? 1回だけ問題集で見たことがあります よろしくお願いします ベクトルの内積 質問です。 ある問題を解いていて aベクトル・bベクトル=cベクトル・bベクトルという値が出て、 │bベクトル│=1 がわかっていてcベクトルを出したかったので (aベクトル・bベクトル)bベクトル=(cベクトル・bベクトル)bベクトル とやってしまってbベクトルの2乗ができると考えてしまって aベクトル=cベクトルとなると考えてしまい 見事に外し、先生に聞くとbベクトルをかけても何もできない と言われたのですが何故なのかわかりません。 自分が内積の意味を分かっていないだけでしょうがよろしければ 何故なのか教えてください。 ベクトルの内積の問題です!!教えてください 次のベクトルaベクトルの内積と、そのなす角θを求めよ。 (1)aベクトル=(-1,1),bベクトル=(√3-1,√3+1) (2)aベクトル=(1,2),bベクトル=(1,-3) 何から始めればいいのかがわかりません…。 よろしくお願いします。 ベクトルの内積と掛け算の違い ベクトルの掛け算というものはあるのでしょうか? 例えばaベクトル(a1,a2)、bベクトル(b1,b2)という2つのベクトルがあるとき、この2つのベクトルの掛け算はどうなりますか?そもそもベクトル同士の掛け算はあるのでしょうか? また、内積はaベクトルの大きさ×bベクトルの大きさ×cosΘとなり、aベクトル・bベクトルで表されますが、これは掛け算とは違いますよね? また上の2つのベクトルを利用すると aベクトル・bベクトル = a1b1+a2b2 と、a1b1+a2b2で計算して出すこともできますがこれもベクトルの掛け算とは言わないのですよね? なぜこんなことが気になったかというと、ある問題の解答が分からなかったためです。 問) aベクトル、bベクトルが次の条件を満たすとき| 2aベクトル-bベクトル |の値を求めよ(「 | 」は絶対値です)。 ●条件 | aベクトル | = 1 , | bベクトル | = 4 , aベクトルの・bベクトル = 2 上の問題の解答が、| 2aベクトル-bベクトル | を二乗して、 4aベクトル・aベクトル - 2aベクトル・bベクトル - 2bベクトル・aベクトル + bベクトル・bベクトル となり、内積の性質を利用し、 4 |aベクトル |^2 - 4aベクトル・bベクトル + |bベクトル|^2 となり、答えは12になります。 この二乗したもの(掛け算?したもの)を内積とみて、内積の性質を利用して解いていますが、そもそもこの掛け算を内積とみていいんですか?この・は掛け算の・ではなく内積の・なんですか? そもそも内積とはなんなんでしょう?・は掛け算じゃないって先生はいいますがもう頭がこんがらがってわかりません。 わかるかた、よろしくお願いいたします。 ベクトルの内積の問題 ベクトルの内積の問題 『x^2 + y^2 + z^2 = 4の時、x - 2y + 2zの最大値と最小値を求めよ』 という問題なのですが、解説には 【ベクトルu=(1,-2,2) ベクトルv=(x,y,z)とおくと、 x - 2y + 2z=ベクトルu・ベクトルv(内積) x^2 + y^2 + z^2=|ベクトルv|^2 となるから…】 と書いてあるのですが、 ・ベクトルu=(1,-2,2)とはどういう事ですか? (1,-2)ならx成分y成分だと思うのですが、3つあるというのはどういうことでしょうか? ・上記のベクトルuと、ベクトルvを使った解法を教えてください。 回答お願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム ベクトルの内積の問題 ベクトルの内積の問題 [b]でベクトルbを表すとします。 [b]・d[b]/ds = (1/2)(d/ds)|[b]|^2 = 0 となるのはなぜでしょうか? 2つのベクトルの内積を求めよ? 次の2つのベクトル→a,→bの内積を求めよ。 (1)→a(1,3,-2) →b(3,-2,-2) (2)→a(-1,5,3) →b(4,-2,1) という問題があったのですが、わからなかったので答えを見たところ 計算式が→a・→b=|→a||→b|cosθと書いてあったのですがこのcosθがどこからくるのかわかりません。。。教えてください。 ベクトルの内積 ベクトルの内積について質問です。 ある問題で、 AB→=x→-y→ OM→=y→-x→ AB⊥OMのとき AB・OM=0より |x|^2-2x→・y→+|y|^2=0 となっているんですけど、これって普通に展開していますよね? 内積と掛算って一緒じゃないはずなのに普通に展開しても良いのでしょうか? a→・b→=|a→||b→|cosθを用いて出したのならこのときのcosθの値はどこにいったのでしょう? わかる方教えてください。 ベクトルの内積について… こんばんは。 数Bでどうしてもわからないことが あるのです… ベクトルの内積のところなんですが、 → → → → a・b=|a|・|b| ・cosθ ↑の式ではなぜcosθを使うのですか? sinθでもtanθでもなくcosθを使う 決定的な理由ってなんでしょう?? 高2でもわかる程度でご説明お願いします↓ 空間でのベクトルの内積が分かりません 空間でのベクトルの内積が分かりません 「→(a)=(1,1,0),→(b)=(2,0,2)とする.→(a)と→(b)に垂直な単位ベクトル→(c)と→(a)と平行で大きさが2のベクトル→(d)を求めよ.」 という問題が分かりません. →(c)=(1/√3,-1/√3,-1/√3)または(-1/√3,1/√3,1/√3) →(d)=(√2,√2,0)または(-√2,-√2,0) だと思いました.合っていますか? 内積について ベクトルa=(1,2) ベクトルb=(2,1) であるとき、 内積は、 「ベクトルaからみたベクトルbの内積」 と 「ベクトルbからみたベクトルaの内積」 が考えられると思うんですが、 a・b=1x2+2x1=4・・・(1) b・a=2x1+1x2=4・・・(2) となり、視点となっているベクトルが無関係になってしまいます。 図を描かずに計算のみで、(1)と(2)を視点を考慮して区別し、角度を求めることは可能でしょうか? ベクトルの内積なのですが・・ ベクトルの内積の説明文に「 → → → → → → a ・b=|a||b|cosθ である。aとb のなす角をθとすると-1≦cosθ≦1であるから → → → → → → -|a||b|≦a・b ≦|a||b| すなわち → → → → |a・b|≦|a||b| が成り立つ」とあったのですが、どういうつながりでいきなり「成り立つ」ということになったのかわかりません・・ 教えてください!! 宜しくお願いします・・!! ベクトルの内積の計算 例えば文字式で、 a・b+b・c=b(a+c) ってなりますけど、ベクトルの内積も同じように括弧で括れますか? AB・DC+AB・EF=AB(DC+EF) って正しいですか? (ABとかはベクトル。) 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など