ベストアンサー ベクトルと内積 2020/08/14 15:52 2つのベクトルの垂直条件を求めるとき、内積=→0(零ベクトル)とするのは間違いですか?また、内積を計算するときは、•(ドット)を省略せずに書いた方がいいですか? みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー f272 ベストアンサー率46% (8653/18507) 2020/08/14 16:02 回答No.1 2つのベクトルが垂直であることと,その2つのベクトルの内積が0であることは同値です。零ベクトルではありません。 > 内積を計算するときは、•(ドット)を省略せずに書いた方がいいですか? 内積だということが分かればよい。内積の記号は•と決まっているわけではない。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) asuncion ベストアンサー率33% (2127/6290) 2020/08/14 22:34 回答No.2 >内積=→0(零ベクトル) ベクトルどうしの内積はスカラーである(ベクトルではない)ことを よく確かめておきましょう。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A ベクトルの内積 ベクトルの内積を勉強していて、ふと思ったのですが、 ベクトルの内積計算において、 3つのベクトルをかけることはできるのでしょうか? ベクトルA,B,Cにおいて A・B = |A|・|B|COSθ となるのと同じように A・B・C =? これもどうにかして計算することはできるのでしょうか? 平面のベクトル内積=0で垂直になる理由? 平面と平面の位置関係が垂直になる時、内積がゼロになることに関しまして、 なぜなのかを、可能ならば 直感的に理解したいです。 ベクトルの基本は勉強しましたが・・・ 突然、「垂直ならば この計算の答えがゼロになる」 と教わっただけで、まだ腑に落ちないでいます。 もしも良い説明がありましたら、よろしくお願いいたします。 ベクトルの内積 2つのベクトルの成す角を求めたいのですが、納得できる数値が得られず困っています。 ベクトルの内積の定義はA・B=|A||B|cosΘと理解しており、ここからcosΘを求めます。 ベクトルA(1,1,0)、ベクトルB(1,1,1)とした場合、二つの成す角は45度だと思うのですが内積の計算からはcosΘ=1/√2とはなりません。cosΘ=2/√6になりますので45度ではないという結果になります。 何故、そうなるのか納得できません。ここが納得できないと次のステップに進めません。 非常に稚拙な質問だと思いますが、どなたか教えてくださいませんでしょうか。よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 空間でのベクトルの内積が分かりません 空間でのベクトルの内積が分かりません 「→(a)=(1,1,0),→(b)=(2,0,2)とする.→(a)と→(b)に垂直な単位ベクトル→(c)と→(a)と平行で大きさが2のベクトル→(d)を求めよ.」 という問題が分かりません. →(c)=(1/√3,-1/√3,-1/√3)または(-1/√3,1/√3,1/√3) →(d)=(√2,√2,0)または(-√2,-√2,0) だと思いました.合っていますか? ベクトルの内積と掛け算の違い ベクトルの掛け算というものはあるのでしょうか? 例えばaベクトル(a1,a2)、bベクトル(b1,b2)という2つのベクトルがあるとき、この2つのベクトルの掛け算はどうなりますか?そもそもベクトル同士の掛け算はあるのでしょうか? また、内積はaベクトルの大きさ×bベクトルの大きさ×cosΘとなり、aベクトル・bベクトルで表されますが、これは掛け算とは違いますよね? また上の2つのベクトルを利用すると aベクトル・bベクトル = a1b1+a2b2 と、a1b1+a2b2で計算して出すこともできますがこれもベクトルの掛け算とは言わないのですよね? なぜこんなことが気になったかというと、ある問題の解答が分からなかったためです。 問) aベクトル、bベクトルが次の条件を満たすとき| 2aベクトル-bベクトル |の値を求めよ(「 | 」は絶対値です)。 ●条件 | aベクトル | = 1 , | bベクトル | = 4 , aベクトルの・bベクトル = 2 上の問題の解答が、| 2aベクトル-bベクトル | を二乗して、 4aベクトル・aベクトル - 2aベクトル・bベクトル - 2bベクトル・aベクトル + bベクトル・bベクトル となり、内積の性質を利用し、 4 |aベクトル |^2 - 4aベクトル・bベクトル + |bベクトル|^2 となり、答えは12になります。 この二乗したもの(掛け算?したもの)を内積とみて、内積の性質を利用して解いていますが、そもそもこの掛け算を内積とみていいんですか?この・は掛け算の・ではなく内積の・なんですか? そもそも内積とはなんなんでしょう?・は掛け算じゃないって先生はいいますがもう頭がこんがらがってわかりません。 わかるかた、よろしくお願いいたします。 ベクトルの内積って何? 角A=90度 AB=5 AC=4 の三角形において次の内積をもとめよ。 というばあいベクトルBA・BC=絶対値のベクトルlBAl・lBClcosαという感じになりますよね。 けど、別の問題では、次のベクトルa,bの内積と、sのなす角θ(0度≦θ≦180度)を求めよ。 ベクトルa=(-1,1) b=(√3 - 1,√3 +1) という問題では内積は、ベクトルa・b=2 となっています。 コサインはいらないのでしょうか・・・? 成分表示をされてるときはいらないのかな・・・とおもいました。 高3なのですが・・・。あまり深い知識はいらないのですが、この2つの何が違うのか?考え方を教えていただけたらと思います。お願いします。 ベクトルの内積と面積 ベクトルの内積ってありますよね? ベクトルの内積はその二つのベクトルの終点同士を 直線で結んでできた三角形の面積となるんでしょうか? 授業で聞いたようなそうでなかったようなうろ覚えで・・・ 調べてみましたがθ=90°のときは内積が0で成り立ちませんでしたが、 θ=60°のときは成り立ちました。 ベクトルの内積 ベクトルの内積とは図形的に何を表しているのでしょうか? 2つのベクトルの内積を求めよ? 次の2つのベクトル→a,→bの内積を求めよ。 (1)→a(1,3,-2) →b(3,-2,-2) (2)→a(-1,5,3) →b(4,-2,1) という問題があったのですが、わからなかったので答えを見たところ 計算式が→a・→b=|→a||→b|cosθと書いてあったのですがこのcosθがどこからくるのかわかりません。。。教えてください。 ベクトルAとBに垂直なベクトルCを求めるには? ベクトルAとBがあり、その両方に垂直なベクトルを求めたいのですが、 どうすれば良いのでしょうか? 内積を計算した結果で0になるものが直行しているというのはわかるのですが・・・ ベクトルの内積 AB=1、BC=√5、CA=√2の時、 ベクトルAB→、AC→の内積AB→×AC→の値を求めよ。 内積の公式が使えないのはわかるのですが、その後がわかりません。解の導き方を教えて頂けませんか。 ベクトルの分解 あるベクトルAがあったとします。例えばこれを(2,3,4)とかとしておいて、ある単位ベクトルe=(1,0,1/2)とかがあり、これと同方向のベクトルとさらに垂直なベクトルにわける場合どのようにすればよいのでしょうか? 内積や外積は関係ありますか? 内積=0で垂直ということなので関係ありそうなんですが、よくわかりません。よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム ベクトル、内積、外積など ベクトル、内積、外積など はじめまして、私は情報系の分野を専門的に学習している学生です。 情報分野ではそれなりの知識を持っているので、あえて数学的な 質問をさせていただきます。 ・三次元平面上に点ABCがあります。 ・点ABCを含む平面上に点Pがあります。 三角形ABC内に点Pが存在することを確かめるには、 どのようにすればよいでしょうか? またこれには以下のような制約があります。 ・パソコン上で計算するので、なるべく計算回数 (特に乗算、除算)を抑えたい。 ・パソコン上では三角関数などは級数なので精度、 処理速度、共に両立できない。 なので、なるべく少ない計算量で、四則演算のみを用いた 解法が必要です。 以下は私の考えた手順ですが、 (1)ベクトルBcとBa(もしくはBp)との外積によりベクトルNを得ます。 (2)ベクトルNとBcとの外積によりBcに直行するベクトルBc´を得ます。 (3)ベクトルBc´とBpとの内積が負ならば、点Pは線分B-Cの外に位置します。 これをB-C、C-A、A-Bと行うことで判定します。 これでは外積を2回、内積を1回計算する必要があり、計算量が多いので より簡潔な手法が必要です。 (本当に数学って大切ですね、もっと勉強しておけばよかった(^^;) 内積について ベクトルa=(1,2) ベクトルb=(2,1) であるとき、 内積は、 「ベクトルaからみたベクトルbの内積」 と 「ベクトルbからみたベクトルaの内積」 が考えられると思うんですが、 a・b=1x2+2x1=4・・・(1) b・a=2x1+1x2=4・・・(2) となり、視点となっているベクトルが無関係になってしまいます。 図を描かずに計算のみで、(1)と(2)を視点を考慮して区別し、角度を求めることは可能でしょうか? ベクトルの内積の記号 2つのベクトルの内積の標記の仕方で, 成分での標記が教科書に載っていませんが, (1,2)・(2,3)=2+6=8 というように成分表示された2つのベクトルの内積を このようにかいてもいいのでしょうか? 1回だけ問題集で見たことがあります よろしくお願いします ベクトルの内積 質問です。 ある問題を解いていて aベクトル・bベクトル=cベクトル・bベクトルという値が出て、 │bベクトル│=1 がわかっていてcベクトルを出したかったので (aベクトル・bベクトル)bベクトル=(cベクトル・bベクトル)bベクトル とやってしまってbベクトルの2乗ができると考えてしまって aベクトル=cベクトルとなると考えてしまい 見事に外し、先生に聞くとbベクトルをかけても何もできない と言われたのですが何故なのかわかりません。 自分が内積の意味を分かっていないだけでしょうがよろしければ 何故なのか教えてください。 ベクトルの内積の問題です!!教えてください 次のベクトルaベクトルの内積と、そのなす角θを求めよ。 (1)aベクトル=(-1,1),bベクトル=(√3-1,√3+1) (2)aベクトル=(1,2),bベクトル=(1,-3) 何から始めればいいのかがわかりません…。 よろしくお願いします。 0ベクトルの記述 ベクトルにおいて、平行条件や内積などの定理は0ベクトルを除くものが多いですが、参考書を見てみると 「0ベクトルではないので」 の前置きがある解答とない解答があります。僕自身は辺にベクトルを与えたり、成分が既に分かっているベクトルなど、0でない事が明らかに保証されているものだから省略しているのかと思いましたが、そうでないものも省略されていたり、逆に0でないのは自明なのに述べている場合もあっていよいよ分かりません。紙面上の都合でしょうか。 ベクトルの内積 ベクトルの内積について質問です。 ある問題で、 AB→=x→-y→ OM→=y→-x→ AB⊥OMのとき AB・OM=0より |x|^2-2x→・y→+|y|^2=0 となっているんですけど、これって普通に展開していますよね? 内積と掛算って一緒じゃないはずなのに普通に展開しても良いのでしょうか? a→・b→=|a→||b→|cosθを用いて出したのならこのときのcosθの値はどこにいったのでしょう? わかる方教えてください。 ベクトルの内積の問題 ベクトルの内積の問題 『x^2 + y^2 + z^2 = 4の時、x - 2y + 2zの最大値と最小値を求めよ』 という問題なのですが、解説には 【ベクトルu=(1,-2,2) ベクトルv=(x,y,z)とおくと、 x - 2y + 2z=ベクトルu・ベクトルv(内積) x^2 + y^2 + z^2=|ベクトルv|^2 となるから…】 と書いてあるのですが、 ・ベクトルu=(1,-2,2)とはどういう事ですか? (1,-2)ならx成分y成分だと思うのですが、3つあるというのはどういうことでしょうか? ・上記のベクトルuと、ベクトルvを使った解法を教えてください。 回答お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など