• 締切済み

条件付き期待値

(1)「条件付き期待値は確率変数」の証明についてですが、E[X|Y]は確率変数Yの関数なので確率変数となると書いてあったのですが、この関数はボレル可測でなくても大丈夫なんでしょうか? もしそうなら理由を教えて下さい。またボレル可測になっているなら、この関数がボレル可測になる証明をお願いします。 また「条件付き期待値は確率変数である」の証明について、他のやり方の方が分かりやすいというものがもしあれば教えて下さい。 (2)「確率変数が連続型の時、E[g(Y)X|Y]=g(Y)E[X|Y]」の証明をできるだけ丁寧に証明して下さい。 Y=yを与えた時の(X,Y)の条件付き密度をどう処理すればいいのか分かりません。 とても急いでます。片方だけでもいいのでよろしくお願い致します。

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

(2) はほぼ一瞬じゃなかろうか. 条件付き期待値 E[X|Y] を考えるときには, Y は定数扱いだよね.

関連するQ&A