ベストアンサー 【至急】中3 数学教えてください 2011/04/10 17:05 右図でAB=AC、∠BAC=∠CADである。 また、線分ACと線分BDとの交点をEとする。 AB=10cm、AD=8cmのとき、 線分CDの長さを求めよ。 という問題です。 解説お願いします。 答えは、2√5cmです。 ちなみに前の問いで △ABE≡△ACDであることを証明しています。 できるだけ詳しく解説していただけると助かります>< 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー gohtraw ベストアンサー率54% (1630/2965) 2011/04/10 19:03 回答No.1 △ABEとACDが合同なのでAEは8cm、ECは2cmです。 一方、∠BAC=∠BDC、∠DBA=∠DCAなので△ABEおよびACDとDCEは相似になります。 CDの長さをxとすると AC:x=x:EC 10:x=x:2 これを解くとx=2√5 となります。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 中3数学図形問題【長文失礼いたします】 【問い】 右の図のように角bac=45°である三角形abcの2点a,bから辺bc,acに垂線を引き、それぞれの交点をd,eとし、adとbeの交点をfとする。ae=12cm,fe=5cmであるとき、三角形abcの面積を求めよ。 【自分なりの解釈】 僕は角aeb=90°、仮定より角bac=45°で角abe=45°となり、直角二等辺三角形によって三平方の定理より1:1:√2になり、ab=12√2cmと考えました。続いて、三角形abdと三角形acdについて、角adb=角adc=90°ー①、角bad=角bacー②、adは共通ー③。①②③より、三角形abd≡三角形acdといえます。よってab=acといえます。だから、ac=12√2cmである。また、直角二等辺三角形よりae=12cmであることから、ceは(12√2-12)cmとなります。また、直角二等辺三角形よりae=beより、be=12cmとなります。したがって、三角形becの面積は12(12√2-12cm)×1/2=(72√2-72)cm2となります。続いて、三角形abeの面積は12×12×1/2より72cm2となります。三角形abc=三角形abe+三角形becより、答え72√2cm2と考えました。しかしながら答えが違います。なぜでしょうか。自分の間違いを何方かご指摘いただけると光栄です。 【至急】中3です。数学教えてください! △ABCは正三角形で、点Pは辺BC上、点Qは辺AC上にある。 頂点Aと点Pを結んだ線分と、頂点Bと点Qを結んだ線分との交点をRとする。 CP=AQ、 AB=8cm、BP=5cmのとき、線分ARの長さを求めよ。 解説お願いします。 答えは7分の24cmです。 ちなみに前の問いにでてきた定義?は ∠CBQ=35° です。 でもこれは前の問いの定義であって この問題にあてはまるかわかりません;; できるだけ詳しく解説していただけると助かります>< 至急お願いします。 数学について教えてください。 ∠BACが鋭角で、AB=3、BC=7、sinC=3√3/14である△ABCがある。 ・△ABCの外接円の点Bを含まない弧AC上に、BD=CDを満たすような点DをとるとADはいくらか。 ・線分ACと線分BDの交点をEとするとBEはいくらか。 解き方から分からず悩んでいます。 分かりやすく教えていただければと思います。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 中2数学の図形問題です! 図のように、線分AB上の1点をCとし、 AC、CBを、それぞれ1辺とする2つの正三角形△ACD、△CBEをつくるとき、 次の問いに答えましょう。 (1) AE=DBとなることを証明しなさい。 (2) AEとBDの交点をPとするとき、 ∠APDの大きさを求めなさい。 数学の問題を教えてください! 私は中3の受験生です。 数学の入試の過去問題を解いているのですが、わからない問題があって困っています。 わかりやすく解説していただけるととってもありがたいです。 よろしくお願いします。 問題 図のように、AD=3cm、BC=2√2cm、CD=√2cm、角BCD=90°の四角形ABCDがあり、角BAC=角BDCである。 線分ACと線分BDの交点をEとする。 このとき、次の問いに答えよ。 1.線分BDの長さを求めよ 2.三角形EABと三角形EDCの面積の比を最も簡単な整数の比で表せ。 また、三角形EBCと三角形EADの面積の比を最も簡単な整数の比で表せ。 3.三角形EABの面積を求めよ 中3 図形 AB=ACの二等辺三角形ABCとその3つの頂点を通るOがある。点Cを通り、ABに平行な直線と円Oとの交点をD,ACとBDの交点をE,∠CAD=45°とする。∠CBE=45°、∠ACB=75、AB=2√3cm、AE=2cmのとき、□ABCDの面積は何cm2? よろしくお願いします。 △ABEの面積が2√3×1×1/2=√3cm2だとは分かったのですが、続きがわかりません。 数学の問題なのですが、教えて下さいませんか? 円に内接する正五角形ABCDEについて、次の問いに答えよ。 (正五角形の上をAとし、左廻りにBCDEとします。ACとBDを結び、その交点がFです。) (1)△ABF相似△ACDを証明せよ。 (2)AB=1とする。BFとACの長さを求めよ。 答だけではなく、解説を宜しくお願い致します。 数学I・A 四角形ABCDが辺ABを直径とする円に内接している。AB=10、BC=6であり、2つの線分AC、BDの交点をEとする。また、AE:EC=3:1のとき、次の問いに答えよ。 1,ACの長さ(解けました。8です) 2,BEの長さ 3,DFの長さ 4,△ABEと△CDEの面積 考え方(求め方)と途中式を教えてください。よろしくお願いします。 二等辺三角形の角度 とある国立の問題です。 正直、ぜんぜんわかりませんでした。 解説がほしいです。 問、 AB=ACである二等辺三角形ABCにおいて∠ABCの二等分線を引き、辺ACとの交点をDとするとAD=BDとなった。 ∠BACの大きさを求めよ。 答え 36度 体積の求めかた 辺の長さがAB=√2,AC=√2,AD=√5,BC=2,BD=√7,CD=3の三角錐ABCDの体積を求める問題で (AC)^2+(AB)^2=(BC)^2,(AB)^2+(AD)^2=(BD)^2が成り立つとき ・∠BAC=∠BAD=90度が分かりません ・平面ACDとABは垂直に交わるか分かりません。 ・cos∠CAD={(AC)^2+(AD)^2-(CD)^2}/(2AC*AD) この式が分かりません。 余弦定理みたいなかんじですが。 高校入試・平面図形の問題【3】 次の問題がよくわかりません。問題に解説が付いていなかったので、分かる方いらっしゃいましたら詳しく教えてください。 ///////////////////////////////////////////////// 【1】下の図のように、円Oの周上にある4点A、B、C、Dを頂点とする四角形ABCDがある。線分ACと線分BDの交点をEとし、また、AB=4cm、∠ABD=∠DBC=30°、∠ACB=45°とするとき、次の各問に答えなさい。 (1)△ACDの面積を求めなさい。 ///////////////////////////////////////////////// よろしくお願いします。 ベクトルの問題2 三角形ABCにおいて、AB:AC=5:2とする。 辺ABを2:3に内分する点をDとし、∠BACの二等分線と辺との交点をEとする。 また、線分CDと線分AEとの交点をFとする。 (1)AEベクトルおよびAFベクトルをそれぞれABベクトルとACベクトルを用いて表せ。また、AFベクトルはAEベクトルの何倍と表されるか。 (2)AB=10、AC=4、∠BAC=Π/3であるとき、三角形ABCと三角形ABEおよび四角形BEFDの面積について △ABC=○ △ABE=○ (四角形BEFDの面積)=○ である。 (2)は○を求める問題です。 (1)のAEベクトルは∠BACの二等分線と辺BCの交点がEなので(ABベクトル+ACベクトル)/2だとわかったのですが、AFが出せません。 ベクトルの基本的な問題なのですが、解き方を忘れてしまい、ノートや教科書の類題を見ても完璧に理解することができずに困っています(--;) 解説よろしくお願いいたします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 高校数学の図形の問題です 3-6 3角形ABCの内部の一点をMとするときMB+MC<AB+ACが成り立つことを証明せよ 解説はBMの延長と辺ACの交点をDとするとAB+AC=AB+AD+DC>BD+DC=MB+MD+DC>MB+MC となっていたのですがAB+AD+DC>BD+DCが分かりません、図だけ見るとAB+AD>BDと見えますが 明確に証明等で示す事が出来ましたら宜しくお願いします 数Iの問題 △ABCにおいて AB=3 , AC=8 , ∠BAC=60°である。 ∠BACの二等分線と辺BCとの交点をD, ∠ABCの外角の二等分線と直線ADとの交点をEとすると BD:DC=AB:(オ) AE:ED=AB:(カ) である。 答えは オ→AC カ→BD どうしてそうなるのかわからないので 解説をお願いします。 数学I・A 教えて下さい 円に内接する四角形ABCDはAB=2 BC=8 CD=DA=4を満たしている。このとき (1)AC=5√2 (2)cos∠ABC=9/16 (3)sin∠ACD=√14/8 である。対角線ACとBDの交点をEとすると (4)AE/EC=1/4 (5)AE=√2 (6)sin∠ABE=? (7)sin ∠AEB=? (1)~(5)までは解けたのですが、(6)(7)が分かりません。 どうやるのでしょうか? 中学生数学 数学で解き方が分からない問題があります。 図のように、AB=6cm、AD=8cmの長方形ABCDがある。対角線BD上にDE=4cmとなるように点 Eをとる。2点A、Eを通る直線と辺CDとの交点をFとする。また、辺AB上にAG=5cmとなるよう な点Gをとり、線分FGと対角線BDとの交点をHとする。 このとき次の問に答えよ。 (問)BH:HDを最も簡単な整数の比で表わせ。 答えは、1:4です。 (問)△EHFの面積を求めよ。 答えは、32/5です。 答えの求め方を教えていただきたいです。 お願いします!! 至急三平方の定理! 至急お願いします!25cmの線分AB上にAC=9cmとなる点Cをとります。ABに垂直で12cmの線分CDをひき、DとA、DとBを結ぶとき次の問に答えよ。 AD=15、DB=20である。 角ADB=90゜であることを証明せよ 数学の問題です 1辺の長さが1の正五角形ABCDEにおいて、対角線AC,BEの交点をFとし、∠ABE=θとおく。 △ABEと△FABは相似である。 線分BFと線分BEの長さを求めよ。この問題でAB:BE=BF:ABとあったのですが、BFのところってFAではないのでしょうか?(ABに対応するのがFAなので) 数学の問題です。 △ABCにおいてAB=4、AC=3、∠BAC=60度とする。また△ABCの外接円をT、その中心をOとするとき以下の問いに答えよ。 (1)BCの長さを求めよ。 答えは √13 (2)外接円Tの半径を求めよ 答えは √39/3 (3)△ABCの面積を求めよ 答えは 3√3 さらに、外接円Tの点B、点Cにおける接線の交点をDとおき、線分ADと線分BCとの交点をEとおく。 (4)∠BOCおよび∠BDCを求めよ。 答えは ∠BOC=120度 ∠BDC=60度 (5)BDの長さを求めよ。 答えは √13 (6)AE:EDを簡単な整数比で求めよ。 答えは 12:13 途中式を教えてほしいです・・・よろしくお願いします 数学の、円の問題です。 下の図で、4点A、B、C、Dは円Oの円周上の点であり、∠BAC=45°、∠CAD=30°、弧AD=弧BCである。ABの長さが6のとき、次の問いに答えなさい。 (1) ACの長さを求めなさい。 (2) 四角形ABCDの面積を求めなさい。 (解説もよろしくお願いします) 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など