- ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:証明の仕方を教えてください。)
二次方程式と数列の性質を証明する方法
このQ&Aのポイント
- 二次方程式x^2-px-1=0の解の数列{a(n)}の性質を証明します。
- すべての自然数nにおいて、a(n+2)=pa(n+1)+a(n)が成り立つことを証明します。
- すべての自然数nにおいて、a(n)が自然数であることを証明します。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
こんにちわ。 (2)は、帰納法で示せますよ。 ただし、n= kだけを仮定してもダメですね。 (3)は背理法で。 a(n)と a(n+1)が共通因数:k(k≠ 1)をもつと仮定すると、 a(n+2)も kを因数にもつことが漸化式からわかります。 つまり、すべての nについて、a(n)は kを因数にもつことになります。 ところが、a(1)と a(2)を考えてみると・・・
その他の回答 (1)
- Tacosan
- ベストアンサー率23% (3656/15482)
回答No.1
帰納法でいいんじゃない?
お礼
ありがとうございました^^ おかげで解答することができました!