ベストアンサー 三角波のフーリエ級数 2003/08/26 13:30 三角波をフーリエ級数で表すときsin(2n-1)ωtというのが出てきます。2n-1とする仮定が分かりません。三角波のフーリエ級数表示の導出を教えて下さい。もしくは、それがあるHPを教えて下さい。 みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー 2718281828 ベストアンサー率36% (66/181) 2003/09/19 00:36 回答No.3 回答から先に。一般的なフーリエ級数展開については、参考URLで確認して下さい。これをそのまま三角波に適用するだけです。ただ、これについてはご存知なのでしょうね、きっと。 ichiro0000さんが勉強したテキストでは、「基本数の偶数倍の高調波は出ない」という仮定をおいて算出しており、その仮定がどこから出てくるか?という質問だと思います。 その仮定は、正弦波と三角波のグラフを並べて描いて見比べれば解ります。どちらも奇函数なので、半周期(0~T/2)にだけ注目します。すると、そのグラフは1/4周期(T/4)の前と後では対称になっていますよね。次に、基本周波数の二倍・三倍の高調波のグラフも描いて同じことをして下さい。同じような対称を示すのは三倍の高調波です。偶数倍の高調波はその対象性がありません。したがって、偶数倍の高調波成分が入り込むとその対象性が崩れてしまい、三角波には収束し得ない、ということがわかると思います。 私もかつてそうであったように「偶数倍の高調波がたくさん入れば、お互いにキャンセルしあって、対象性の崩れも元に戻るのではないか?」という疑問を持たれるかもしれません。が、それは有り得ません。それを理解するには、函数の直交性・フーリエ級数の収束について理解する必要があります。それ相応の専門書でみっちり学んで下さい。 そうでなければ、別に質問を立てて下さい。 参考URL: http://homepage2.nifty.com/tomka/fourier1.html 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) y_13 ベストアンサー率25% (1/4) 2003/08/27 16:47 回答No.2 y_13です。補足します。 補足の件の >>「cos波の周波数成分が奇数倍のものしかない」とありますが「sin波の周波数成分が奇数倍のものしかない」との間違いではないでしょうか? という話についてですが、先日私が目を通した文献では対象とする三角波がx=0のときy=A(←三角波の最大値)を通る、いわゆる偶関数だったんですよ。 偶関数はフーリエ級数展開するとsin波の成分が0、cos波の成分だけになっちゃうんですよね。 だのでichiro0000さんの扱っている三角波がx=0でy=0、奇関数だったのならフーリエ級数展開するとcos波の成分が0になってsin波の成分だけになるんで、そういうお互いの扱う三角波の位相の違いからきた問題だったんだと思います。けど前回の回答みたいな表現はちょっと不親切だったかもしれませんね。ごめんちょ で、なんで三角波に奇数倍の高調波しか出てこないのかということについてですが前述した私の文献の偶関数としての三角波を例にとると、とりあえずフーリエ係数の計算結果が anはnが偶数の時0、nが奇数の時に8A/(πn)^2(Aは例によって三角波の最大値) bnは0 となることに起因していますということだけ記しておきますね。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 y_13 ベストアンサー率25% (1/4) 2003/08/26 14:02 回答No.1 どこかで習ったことがあるような気がしたので手持ちの本を見たところ、どうやらcos波の級数をガチャガチャやってsin波で表現しようとするとsin(2n-1)ωtという表現が出てくるみたいですね。cos波の周波数成分が奇数倍のものしかないので、Σでくくったらそうなるみたいですよ。 補足が必要ならまたやりますけど…どうでしょうか? 質問者 お礼 2003/08/26 17:06 有難う御座います。 私も、結果的にそうなるのだろう・・程度の理解です。取り合えずそれを使うにあたって回りの方がどの程度の理解で使っているのかが気になっていました。だから、この回答でOKです。 質問者 補足 2003/08/26 18:24 再度お願いいたします。 「cos波の周波数成分が奇数倍のものしかない」とありますが 「sin波の周波数成分が奇数倍のものしかない」との間違いではないでしょうか? 私自身調べてみましたが分かりません。どうでしょうか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育自然科学物理学 関連するQ&A フーリエ級数の求め方。 フーリエ級数展開の問題で [-π,π]の区間で|sin(t)|をフーリエ級数展開せよ。という問題です。 公式に当てはめて a_0 = (1/π)*∫[-π,π] |sin(t)| dtとなって、まずこれを =(2/π)*∫[0,π] sin(t) dtと直せますか? 絶対値がついているのでsin(t)は、π周期になってるのでこう直せると思ったんですが。 次にa_nを求めるのに a_n=(1/π) * ∫[-π,π] (|sin(t)| * cos(nt)) dt これも =(2/π)*∫[0,π] sin(t) * cos(nt) dtとしてしまって問題ないですか? あとこの積分は 部分積分や三角関数の積和の公式を使って解けばいいのでしょうか? フーリエ級数について勉強を始めたばかりで自信がなくて細かいことを聞いてしまって 申し訳ありませんがよろしくお願いします。 フーリエ級数について 現在フーリエ級数の問題を解いているんですが、解答がないので答えが合っているか教えて下さい。また間違えていたら解答と解き方を教えてください。 f(t)のフーリエ級数を求めよ。 f(t)=0 (-π<t<0) t (0<t<π) 自分の解答 a0=π/4 , an=(1/2)*cos nπ , bn=(π/2)*sin nπ よろしくお願いします。 フーリエ余弦級数 フーリエ余弦級数について勉強しているのですが、与式 f(t)=2t(0≦t≦2/π) のa0とanは求められたのですが、最後のf(t)に代入するときにΣがあってそこに入れる時は sin(nπ/2)とcos(nπ/2)を三角関数を使わずにΣの形にしろとのことでわかりません。計算過程を詳しく教えていただけると助かります。 どなたかよろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム フーリエ級数教えて下さい f(t)=(1/T)*tを[-T/2,T/2]でのフーリエ級数の式を解いていたら、 答えが(-2/π)Σ_[n=1,∞](1/n)になったんですがあってますか? フーリエ級数がマイナスになるのかどうかよくわからないです。 フーリエ級数展開と複素フーリエ級数展開の証明 T=1,x(t){=1(-1/4<t<1/4) =0(-1/2<t<-1/4,1/4<t<1/2) この周期関数をフーリエ級数展開すると x1(t)=Σ_[=1,+∞]{4/nπsin(nπ/2)cos2nπt} また、複素フーリエ級数展開すると x2(t)=Σ_[n=-∞,+∞]2/nπsin(nπ/2)e^j2πnt x1(t)=x2(t)が等しい事を証明する。 オイラーの公式を使って示せばいいと思うのですが、行き詰ってしまいなかなかうまく行きません。お手数ですが、出来れば証明をして頂けないでしょうか?よろしくお願いします。 フーリエ級数について 次の問題を解いてください。 周期2πの関数f(x)が区間-π<x≦πにおいて次のようにフーリエ級数に展開されている。 f(x)=Σ[n=1,∞]2sin(nx)/n ここで、関数g(x)が区間-π<x≦πにおいて区分的に連続で、そのフーリエ級数は g(x)=c_0/2 + Σ[n=1,∞](c_n cos(nx)+d_n sin(nx)) で表されるとき、次の二つの関係式を三角関数の直交性を用いて説明せよ。 I_1=(1/2π)∫[-π,π]f(x)g(x)dx=Σ[n=1,∞]d_n/n I_2=(1/2π)∫[-π,π]f(x)g(x+t)dx=Σ[n=1,∞](d_n cos(nt)-c_n sin(nt))/n くわしくお願いします。 フーリエ級数展開について 三角波のフーリエ級数展開の係数を求める途中で計算の進み方がわからなく困っています。 次の形が周期Tで繰り返す三角波をフーリエ級数展開せよ。 f(t)=1-(2|t|)/T (|t|≦T/2) という問題なのですが、 anを計算する上で、どのように積分すればいいのか途中式も含めて説明して頂ければありがたいです。どなたかよろしくお願いします。 三角波のフーリエ級数展開について 三角波のフーリエ級数展開について質問です。 どなたかわかる方おられますでしょうか? どうかご教授のほどよろしくおねがい致します。 フーリエ級数についてお尋ねします。 フーリエ級数を学ぶとき、最初に周期関数に対するフーリエ級数を考えます。例えば[-π, π]というような区間の関数が[π, 2π], [2π,3π],,,というように繰り返すようなものですね。 そこで、級数の係数an, bnを積分( 区間[-π,π]) によって表示したりします。その後、フーリエ変換になってくると”周期関数を仮定する”などのような変換される関数に対する要請が無くなるようです。 質問ですが、どうしてフーリエ級数では周期関数という要請が必要なのでしょうか。フーリエ級数の積分区間は[-π, π]に限定なのだから、その区間だけ定義されていればいいはずで、その関数系が左右に繰り返される場合を考えるというのはなぜでしょうか。 台形波のフーリエ級数 台形波のフーリエ級数の問題です。写真の台形波のフーリエ級数を計算してみたのですが、これであっていますでしょうか?もし間違っていたら指摘してください!!回答よろしくお願いします。 f(t)=(Vm/α)t (0<=t<=α) f(t)=Vm (α<=t<=π-α) A0=An=0 Bn=1/π∫[2π→0]f(t)(sinnt)dt =1/π×4∫[α→0]f(t)(Vm/α)t(sinnt)dt + 1/π×2∫[π-α→α]Vm(sinnt)dt =(4Vm/πα){-α(cosnα)/n+sinnα/n^2} + (2Vm/π){-cosn(π-α)/n+cosnα/n} =(2Vm/π){2sinnα/n^2α - cosnα/n - cosn(π-α)/n} よって、 f(t)=(2Vm/π)Σ[n=1,∞]{2sin(2n-1)α/(2n-1)^2α - cos(2n-1)α/ (2n-1) - cos(2n-1)(π- α)/(2n-1)}sin(2n-1)t フーリエ級数 私は、現在フーリエ級数について学習中ですが、現在ではのこぎり波(三角波)を用いたフーリエ級数の求め方に悪戦苦闘しています。この場合は短形波を用いたフーリエ級数と同じようにフーリエ係数(An, Bn)を使って解くのでしょうか? 説明不足かもしれませんが、どなたかよろしくお願いします。 ちなみに、参考文献はありますか? フーリエ級数、フーリエ変換、離散フーリエ変換 こんばんは。 ・正弦波 ・余弦波 ・三角波 上記3つについて、それぞれ ・フーリエ級数 ・フーリエ変換 ・離散フーリエ変換 を求めよ、という課題を出されました。 周期2Tで、-T~Tの区間以外は0として考えていいとのことなのですが、全然分かりません。 教えていただけないでしょうか? よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 方形波 フーリエ級数展開 t=2のときー1,t=1のとき1を取る方形波電圧をフーリエ級数で展開するという問題なのですが, その時の関数g(t)が奇関数なので, g(t)=Σ(n=1→∞)an sin(nwt) …(1) と置くと, an=2/T ∫(0→T) g(t) sin(nwt)dtより, 周期T=2の時 an=2/2 ∫(0→2) g(t) sin(nπt)dt =∫(0→1) g(t) sin(nπt)dt + ∫(1→2) g(t) sin(nπt)dt =∫(0→1) 1× sin(nπt)dt + ∫(1→2) (-1)× sin(nπt)dt =[-cos(nπt)/nπ](0→1) - [-cos(nπt)/nπ](1→2) =-cos(nπ)/nπ - (-1/nπ) -{-cos2nπ/nπ - (-cosnπ/nπ)} =2(-cosnπ/nπ) + 1/nπ + cos2nπ/nπ …(2) n=1の場合(または奇数) (2)=4/π n≠1の場合(または偶数) (2)=0 よって(1)より, g(t)=Σ(n=1→∞) 4/π sin(nwt) =4/π Σ(n=1→∞) sin(nwt) という風に計算をしたのですが、フーリエ級数はこういう形になりませんよね。積分とフーリエが苦手なものでつっかえながらいろいろな参考書をあさって見たのですが,理解できずにいます。 分かりづらい説明なのですが,改善点等ありましたら,ご指摘頂ければ幸いです。 フーリエ級数展開についてです。 急いでます。 (1)下の図のような周期2の関数がある。これをf(t)=|t| (-1<t<1)とし、そのフーリエ級数展開を求めなさい。なお、フーリエ級数展開はフーリエ係数を求めそれらの係数を用いて与式を展開すること。 | /\ | /\ _\/__\|/__\/___ -1 1 (2) 上の結果を用いて、Σ 1/(2n-1)^2=(π^2)/8となることを導きなさい。 (n=1~∞) という問題を教えてください。 フーリエ級数の求め方 下図の関数のフーリエ級数を求めよ。 間違っている所、考え方を教えて下さい。よろしくお願いします。 <解いたやり方> 奇関数よりC0 = 0, Bn = 0 An = 1 *∫(0→1) (2x * sin (nπx/2)) dx + 1 * ∫(0→1) (2 * sin(nπx/2)) dx とおいてときました。 正しい解答はΣ(n=1→∞)(((8/n^2*π^2)sin(nπ/2)-(4*(-1)^n/nπ))sin(nπx/2) となります。 フーリエ級数について 次の問題を解いてください。 f(x)を区間-π≦x≦πで連続かつf(-π)=f(π)をみたし、その導関数f'(x)が区分的に連続な関数とする。f(x)が、 F(x)=a_0/2+Σ[n=1,∞](a_n cos(nx)+b_n sin(nx)) とフーリエ級数に展開されるとき、以下の問いに答えよ。 (1)f'(x)をフーリエ級数に展開したときの展開係数をa_n,b_nを用いて表せ。 (2)(1)式の右辺をxで微分し(フーリエ級数の項別微分)、これを(1)と比較せよ。 くわしくお願いします。 フーリエ級数展開の問題の解き方 区間[0,2π]での(sin(t/2))^2をフーリエ級数展開求めろという問題なんですが, a_0=(1/π)*∫[0,2π] (sin(t/2))^2 dt =(1/ 2*π)*∫[0,2π] (1-cos(t)) dt =1 なのはあってると思うんですが, a_n=(1/π)*∫[0,2π] ((sin(t/2))^2) * cos(nt) dt と b_n=(1/π)*∫[0,2π] ((sin(t/2))^2) * sin(nt) dt を解くとどっちも0になってしまいます。 解答ではフーリエ級数展開したのは,(1/2) - (1/2)*cos(t)となっているんですが -(1/2)*cos(t)はどこからでてきたのでしょうか? よろしくおねがいします。 フーリエ級数の問題 f(x)は周期2πをもつとする。 f(x)のフーリエ級数を求める。 (1)f(x)=x(-(π/2)<x<(π/2)),π-x((π/2)<x<(3π/2)), この条件でフーリエ級数を求めると、 グラフを描くと奇関数になるので、a0=0,an=0, bn=(4/nの2乗π)sin(π/2)n したがってフーリエ級数は、 f(x)=(4/π){sinx-(1/9)sin3x+(1/25)sin5x-・・・} でいいのでしょうか? (2)f(x)=xの2乗(-(π/2)<x<(π/2)),π/4((π/2)<x<(3π/2)), グラフを描くと、偶関数になったので、bn=0, a0=(πの2乗)/6, an=(2/π){(π/nの2乗)cos(π/2)n-(2/nの3乗)sin(π/2)n} よって、 f(x)=((πの2乗)/6)+(2/π){-2cosx-(π/4)cos2x+(2/27) cos3x+・・・} これでいいのでしょうか? ご回答よろしくお願いします。 ジッタを含むフーリエ級数展開 ジッタを考慮すると正弦波が歪むと思うのですがその時のフーリエ級数展開があまりよくわかりません。 もう少し詳しく言うと、「f(t)=sinωt」は普通にフーリエ級数展開できると思うのですが(もちろんωにピーク)、 「f(t)=g(z)*sinωt」の時のフーリエ級数展開です。 私が最初に言ったジッタとはg(z)の事で、例えば1を平均、小さな分散σをもった正規分布などをモデルとしています。このフーリエ級数展開は変数tだけでなくzも考慮して二重フーリエしなくてはならにのでしょうか? また、g(z)はtに対してランダムに変化する(正規分布)のでtだけで考えればいいと思うし、その方が楽なような気もするのですが・・・ ちょっと、自分でも訳のわからない説明になってしまいましたが、どなたかアドバイスの方お願いします。 フーリエ級数の問題です f(x)= x (-π<= x <=π) のフーリエ級数を用いて無限級数和 (1) Σ[n=1~∞] Σ 1/n^2 (2) Σ[n=1~∞] (-1)^n/n^2 を求めよという問題ですが、フーリエ級数は求められて f(x)= 2Σ[n=1~∞] {(-1)^n+1}*sin(nx)/n になるけれど、xに何を代入すればいいかわかりません。御回答よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
有難う御座います。 私も、結果的にそうなるのだろう・・程度の理解です。取り合えずそれを使うにあたって回りの方がどの程度の理解で使っているのかが気になっていました。だから、この回答でOKです。
補足
再度お願いいたします。 「cos波の周波数成分が奇数倍のものしかない」とありますが 「sin波の周波数成分が奇数倍のものしかない」との間違いではないでしょうか? 私自身調べてみましたが分かりません。どうでしょうか?