- 締切済み
フーリエ級数の問題
f(x)は周期2πをもつとする。 f(x)のフーリエ級数を求める。 (1)f(x)=x(-(π/2)<x<(π/2)),π-x((π/2)<x<(3π/2)), この条件でフーリエ級数を求めると、 グラフを描くと奇関数になるので、a0=0,an=0, bn=(4/nの2乗π)sin(π/2)n したがってフーリエ級数は、 f(x)=(4/π){sinx-(1/9)sin3x+(1/25)sin5x-・・・} でいいのでしょうか? (2)f(x)=xの2乗(-(π/2)<x<(π/2)),π/4((π/2)<x<(3π/2)), グラフを描くと、偶関数になったので、bn=0, a0=(πの2乗)/6, an=(2/π){(π/nの2乗)cos(π/2)n-(2/nの3乗)sin(π/2)n} よって、 f(x)=((πの2乗)/6)+(2/π){-2cosx-(π/4)cos2x+(2/27) cos3x+・・・} これでいいのでしょうか? ご回答よろしくお願いします。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- info22
- ベストアンサー率55% (2225/4034)
回答No.1
(1)合っています。 (2)問題のf(t)の式が間違っています。 >f(x)=xの2乗(-(π/2)<x<(π/2)),π/4((π/2)<x<(3π/2)), f(x)=(x^2) (-(π/2)<x<(π/2)), =(π^2)/4 ((π/2)<x<(3π/2), と問題を訂正すれば、結果は正しくなります。
お礼
ご回答ありがとうございます。 ということは、 両方あっているのですね。 ありがとうございました。