ベストアンサー 複素関数の問題です。 2010/10/17 01:11 複素関数の問題です。 zは複素数 ∫f(z)|dz|は何を求めているのでしょうか? みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Mr_Holland ベストアンサー率56% (890/1576) 2010/10/17 01:47 回答No.2 zを極座標形式r・exp(iθ)で表せば一目瞭然ではないでしょうか。 |dz|=dr となり rで積分していることになります。 質問者 お礼 2010/10/17 02:06 ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) angkor_h ベストアンサー率35% (551/1557) 2010/10/17 01:22 回答No.1 下記ご参照↓ http://nkiso.u-tokai.ac.jp/math/komori/complex.htm 質問者 お礼 2010/10/18 10:34 ありがとうございました 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 複素関数の問題 複素関数の問題 次の複素関数の問題ですが,この関数の特異点が分からずに困っています? f(z) = 2 / ( λz^2 + 2μiz - λ ) ただし z :複素数 λ・μ:実定数でμ>λ>0です 追加で,この複素関数の特異点も教えていただけると幸いです f(z) = z^-c / ( 1+z ) ただし、0<c<1 です これの特異点は-1でいいのでしょうか? 以上、よろしくお願い致します 複素関数の分野の質問です。 複素関数の分野の質問です。 z∈C(複素数)として、積分における|dz|とdzの違いは何なんでしょうか? 教えてください。 共役複素関数について 複素数z=x+iyに共役な複素数がz*=x-iy であるということはわかるのですが、ある複素関数f(z)に共役な複素関数というものがどうゆうものであるかがよくわかりません。教えていただけるとありがたいです。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 複素数値の面積とはどういうものなのでしょうか? 複素積分とは ∫_c f(z)dz:=lim_{n→∞,max|z_k-z_{k-1}|→0}Σ_{k=1}^nf(ζ_k)(z_k-z_{k-1}) で定義されるものだと思います。 イメージとしては2変数実関数z=f(x,y)の線積分(R^3内曲線z=f(x,y)下のカーテンの面積に相当)の複素バージョンと感じました。 一般には∫_c f(z)dz値は複素数になりますが複素数値面積とはどう捉ええればいいのでしょうか? 面積には広い・狭いという概念がありますが,複素数の世界では大小関係がありませんよね。 よって,複素数値面積には広い・狭いとかの概念が存在しない事になってしまいますよね。 うーん一体,複素数値面積とはどういうものなのでしょうか? 分かりやすくお願い致します。 複素関数の導関数 微分の定義 lim{Δz→0} {f(z + Δz) - f(z)}/Δz に立ち戻らずに偏微分などを使って複素関数の導関数を求めたいのですが。 w = f(z) = u + iv, z = x + iy (x,y,u,vは実数) として f'(z) = dw/dz = (d/dz)(u + iv) までは合ってますよね? ここから du/dz = (∂u/∂x)(∂x/∂z) + (∂u/∂y)(∂y/∂z) として ∂z/∂x = 1, ∂z/∂y = i より du/dz = ∂u/∂x - i ∂u/∂z 同様に dv/dz = ∂v/∂x - i ∂v/∂z としてしまっていいのでしょうか? 実際の例としてf(z) = sin(z)を例に教えてください。 複素関数の問題の解答解説を教えてください。 複素関数の問題の解答解説を教えてください。 f(z)は正則でf(1) = 2(1 + i), f(-it) = f(it)および∫[0→2]f(it)/((t^2)+1) dt = πi を満たすとする。 c ∶ z = 2e^(iθ) (-π/2≤ θ ≤π/2) とするとき∫c f(z)/((z^2)-1) dz を計算しろ お願いします。 複素関数の積分の問題の解答解説をお願いします。 複素関数の積分の問題の解答解説をお願いします。 ∫[|z-2|=3] 1/(z(z+8)(2-z)^3) dz よろしくお願いします。 複素関数の積分の問題の解答解説をお願いします。 複素関数の積分の問題の解答解説をお願いします。 ∫[|z|=1] 1/(z(z+8)(2-z)^3) dz よろしくお願いします。 複素関数の問題です。 複素関数の問題です。 複素平面の上半平面をH={z∈C | Imz>0} H上の正則関数f(z)を線積分」 f(x) = int _[0,z] √ζ√(ζ-1)dζ で定義。 [0,z]は0を始点、zを終点とする線分であり、 平方根はH上でHを値にとる分枝。 【問題】 fによるHの像を求めよ。 方針すら見えず困っています…。 すいませんが、よろしくお願いします。 【複素関数】 複素関数の積分の質問です。 Ir=1/2πi×∫f'(z)/f(z)dz (原点中心,半径rの円Crで積分) について、f(z)=(zのn次多項式)のとき、半径 r を十分大きいものとして Ir(つまりは、関数f'(z)/f(z)の全留数の和)を求めたいのですが この場合、特異点はどのようになるのでしょうか。 f(z)=0とは置いたものの、そのあとの方針が立たず、 うまく求めることができません。 数学のできる方がおられましたら、 ご享受下さい。よろしくお願いします。 複素積分の問題 複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ 複素関数の問題です。 複素関数の問題です。 複素関数の問題で分からない問題があって困っています。 【問題】 F(z)=u(x,y)+iv(x,y), z=x+iy において u(x,y)=a, v(x,y)=b で表される曲線をxy平面上に描いたとき、それらの交点においてF´(z)≠0であれば、その交点における各曲線に対する接戦が互いに直交することをコーシー・リーマンの関係式を用いて示せ。ただしF´(z)はF(z)の導関数であり、関数u(x,y)の点(x,y)での微分は、 du=(∂u/∂x)dx+(∂u/∂y)dy で与えられる。 わかる方がいれば、どうか教えていただけないでしょうか? よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 複素積分の問題 複素積分の問題 複素関数の勉強をしている者なのですが、 ∫(3z-4z^3)/(2z-1)^4 dz (積分範囲は|z|=1 ) の解き方が分かりません。解答によると答えは -πi/2 です。 分かる方できるだけ詳しく解説をお願いします。 複素関数の問題です。 複素関数の問題です。 f(z)=z/(1+z^2)として、 f(z)の{z:0<|z-i|<2}におけるローラン展開を求めよ、という問題がありました。 この{z:0<|z-i|<2}というところがよくわからなくて困っています。 普通、ローラン展開するときは z=ある値 における、という表記が使われることがおおいと思いますが、これはいったい z=いくつで展開すればいいのでしょうか。よろしくお願いします。 複素関数の積分 正の実数rに対して、Crを複素平面上の中心0、半径rの円とする。ただし、曲線の向きは偏角の正の向きとする。また、a、bを0でない実数とし、複素関数fをf(z)=z/((z-a)(z-b))と定義する。 このとき、∫_(Cr) f(z)dzを求めよ。ただし、Crが特異点上を通るときは考えないこととする。 教えてください。 複素関数の問題 複素関数の問題 複素平面上の点A(1),B(i)を結んだ線分AB上をzが動くとき,w=z^2+2zはどのような図形上を動くか?(zは複素関数,iは虚数)という問題で,z=1-t+it (0≦t≦1,t∈R) とパラメータtでzを置いたり,w+1=(z+1)^2としてみたりしたのですが,どのような図形上を動くのかがわかりません. どなたか教えていただけないでしょうか?? 複素関数の問題です 複素関数の問題です。 次の問題が解けなくて困っています。どなたか解説できる方宜しくお願いします。 f(z)は,|z|≦1の領域で正則な複素関数とする. (1) nを自然数とするとき,∫[0→2π]f(e^iθ)cos(nθ)dθ={π/(n!)}f^(n)(0)が成り立つことを示せ. (e^iθ=zで置換) (2) mを自然数とするとき,∫[0→2π]f(e^iθ)cos^(2m)θdθ={π/2^(2m-1)}Σ[k=0,m]C(2m,k){f^(2m-2k)(0)}/{(2m-2k)!}が成り立つことを示せ.ただし,f^(0)(0)=f(0)とする. (3) ∫[0→2π]cos(2mθ)cos^(2m)θdθ=π/2^(2m-1)を示せ. (zの領域に注意) 複素線積分 複素数の線積分に関する問題です。 1/(2i)∫[L]z~dz=S を示せという問題です。 ただし、z~は複素数zの共役数で、 Sは複素平面上の閉じた経路Lで囲まれた部分の面積です。 どなたか、解答を教えてください。 どこから手を付けていいのか分かりません。 複素関数の積分について教えてください。 複素関数で、次のような問題がだされました。 Cをx=cosyに沿って1から-1+πiに至る曲線とするとき、次の積分を求めよ。 ∫c ze^zdz よくわかってないので、次のような回答になってしまいました。 根拠はありません。 f(z)=ze^zは前平面で正則なので、f(z)の原始関数F(z)の原始関数によって ∫c (ze^z)dz=[ze^z](←πiから1まで)-[e^z](←πiから1からまで) =πie^πi-e-(e^πi-e) 以上です。 どなたか、正しい答えを教えてください。 複素関数でのロピタルの定理 「f(z),g(z)は複素変数の複素関数で、z=αを含む領域で正則。また、f(z)=0(z→α),g(z)=0(z→α)であるとする。このとき、f'(z)/g'(z) (z→α) が存在するならばf(z)/g(z) (z→α) = f'(z)/g'(z) (z→α) が成り立つか」 という問題を調べているのですが、なかなか見つかりません。要は実数値関数のロピタルの定理を複素関数に拡張できるかという問題なんですけど、どう証明すればいいのでしょうか。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございました。