運動方程式の考え方
質量mの金属球に長さLの糸の先端を接着剤でつける。糸の他端を点Oに固定して鉛直に垂らす。球に水平な初速度v(0)を与える。ここで直交座標を点Oを原点とし水平方向(右向き正)をx軸、y軸(上向きを正)のように取るとき、運動方程式は、(Sは糸の張力)
mdv/dt=-mgsinψ(接線方向)…(1)
mv^2=S-mgcosψ(向心成分)…(2)
(1)(2)に速度を内積して,辺辺加え
初期条件ψ=0,v=v(0)を考慮して
S=mg(v(0)^2/gL-2+3cosψ)…(3)
が導けるが、 v(0)^2/gL=5(ψ=π)のとき、S=0,この時刻をt(0)とする。t(0)<tの時、(3)を利用して
S>0を示し円軌道を続ける。ここがすっきりしません。t(0)<tの時、円軌道上にある保障はないのに、どんな本も(3)(「つまり(1)(2)の運動方程式が成り立つことを前提として」)より説明されています。つまり、t(0)まで円軌道しているのでΔt(極めて短い時間)後も円軌道上にあるはずであるから(つまり、運動方程式瞬間では変われないから)(1)(2)が成り立つとしてよいから(3)が成り立つのでS>0と考えてよいのでしょうか。ご指導を宜しくお願いします。
お礼
詳しい解答ありがとうございました たいへんさんこうになりました。 ありがとうございます