高校数学 図形の証明問題
点Oを中心とする半径1の球面上に3点A,B,Cがある。線分BC,CA,ABの中点をそれぞれP,Q,Rとする。線分OP,OQ,ORのうち少なくとも1つは長さが1/2以上であることを証明せよ。
自分の解答(以下の↑はベクトルを表します)
↑OA=↑a, ↑OB=↑b, ↑OC=↑cとすると、|↑a|=|↑b|=|↑c|=1
↑OP=(↑b+↑c)/2, ↑OQ=(↑a+↑c)/2, ↑OR=(↑a+↑b)/2より、
↑aと↑c, ↑aと↑b, ↑bと↑cのなす角をそれぞれα,β,γとおくと
|↑OP|=√2(1+cosγ)/2, |↑OQ|=√2(1+cosα)/2,|↑OR|=√2(1+cosβ)/2
∴ 1+cosα>1/2 または 1+cosβ>1/2 または 1+cosγ>1/2であればよく
すなわち 0<α<2π/3 または 0<β<2π/3 または 0<γ<2π/3 ー(1)を示せばよい。
4点O,A,B,Cが同一平面上にあり、点Oが三角形ABCの内部にある場合 α+β+γ=2πだから(1)は成り立つ。
4点O,A,B,Cが同一平面上にあり、点Oが三角形ABCの外部にある場合 例えば点Oが直線BCの下側にあるときα+β<πであり、OがAB,ACの下側にある場合も同様にそれぞれα+γ<π , β+γ<πであるから(1)は成り立つ。
また、O,A,B,Cが同一平面上にない場合 α+β+γ<2πだから(1)は成り立つ。
以上より、題意は示された。
上のような解答で証明が正しくできているのか自信がないので(特に「4点O,A,B,Cが同一平面上にあり、点Oが三角形ABCの外部にある場合」と「O,A,B,Cが同一平面上にない場合」)添削をよろしくお願いいたします。
お礼
おかげさまで解けました。 ありがとうございました。