ベストアンサー 微分 2009/06/21 14:09 log{tan(x/2)} これの微分のやりかた教えてください。お願いします。 答えは 1/sinx です。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22 ベストアンサー率55% (2225/4034) 2009/06/21 14:41 回答No.2 単に合成関数の微分です。 [log{tan(x/2)}]' ={1/tan(x/2)}*{tan(x/2)}' ={1/tan(x/2)}*{1/cos(x/2)}^2*(x/2)' ={cos(x/2)/sin(x/2)}*{1/cos(x/2)}^2*(1/2) =1/2sin(x/2)cos(x/2)} =1/sin(x) 質問者 お礼 2009/06/21 23:59 わかりやす回答ありがとうございます。 参考にさせていただきます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) rnakamra ベストアンサー率59% (761/1282) 2009/06/21 14:37 回答No.1 合成関数の微分を使えばできます。 u=x/2,v=tan(u)とおくと (d/dx)log{tan(x/2)=(d/dx)log(v) =(dv/dx)(d/dv)log(v) =(du/dx)(dv/du)(d/dv)long(v) となります。 後の計算は代入するだけでのご自分でがんばってください。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分 微分 e^2x と sinx/2 と log の微分はどのようにして解くのでしたっけ? 微分 y=(sinx)^x (0<x<3π/2) 回答では対数微分法を用いていますがあまり使いたくないので 解説お願いします。 以下自分の回答です。 y´={(sinx)^x}log(sinx)*cosx 合成関数として微分しています。 積分の問題 1.sinx/(1+sinx) の問題でtan(x/2)=tを使って sinx=2t/1+t^2 , dx=2dt/1+t^2 を代入して解くと思うんですが、どうしたらいいか分かりません。答えは一応載っていて x+{2/(tan(x/2)+1)}になります。 2.x^4/(x^3-1) の問題でx^4=(x-1)(x^2+x+1)にまずすると思うんですが、そこからがわかりません。しかも答えを見てもlogやtanが出てきていてどうしたのか分かりません。答えは (1/2)x^2+(1/3)log|x-1|-(1/6)log(x^2+x+1) +(1/√3)tan^(-1)(1/√3)(2x+1) よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 微分 (1) {x^3・sinx}' (2) {x^3・logx}' (3) {sin(2x)}' の微分した答えを教えてください 関数の2回微分の計算について f(x)=log(tan〘x/2〙)(0<x<π)について二回微分してx=π/6を代入して出てくる値を求めよ。 という問題なんですが、いくらやっても答えが合いません。 計算式を教えていただけないでしょうか? 線形微分方程式の問題 この微分方程式が解けません。 dy/dx+y/x=sinx/x 途中まで解いたのですが、∫(sinx/x)e^log|x|dxで躓いています。 ちなみに答えはy={-cosx-C}/xだそうです。 よろしくお願いします。 大学数学(微分)NO7 次の関数を微分してください。 1、y=1/3tan^x-tanx+x 2,y=sinx/√(a^2cos^2x+b^2sin^2x) 3,y=log[(a+tanx)/(a-tanx)]= 4,y=cos^(-1)(acosx+b)/(bcosx+a) 5,y=tan^(-1)[√(1+x^2)+√(1-x^2)]/[√(1+x^2)-√(1-x^2)] 御教授宜しくお願いします。 三角関数の微分 三角関数の微分が解けません。 三角関数の法則を利用して答えは纏めた形になるのですが、上手く纏める方法が思いつきません。 1. y=sin^2xcos^3(2x) y'=2sinxcosx*cos^3(2x)+sin^2x*(-6)cos^2xsinx Ans:y'=sin2xcos^2(2x)*{1-8sin^2(x)} 2sinxcosxを2倍角の公式を利用したりして纏めましたが答えにたどり着けません。 また、 2. y=sinx/1+tan^2(x) y'=cosx{1+tan^2(x)}-sinx*2tanx{1/cos^2(x)} Ans:y'=cosx{1-3sin^2(x)} 纏め方について助言お願いします。 微分について 微分について x^2+y^2=a (aは定数)をxで微分すると、2x+2y*y'=0となりますよね? いま、f(x+y)=f(x)*(y)-(sinx)(siny)をyで微分したいのですが、良く分からず先ほど質問をしたところf(x)をyで微分すると0になると教えていただいました。 答えを見てもそのようになっているみたいなのですが、いまいち納得いきません 自分としてはf'(x+y)=f'(x)*f(y)+f'(y)*f(x)-(sinx)'(siny)-(cosy)(sinx)としたいのですが。 y^2をx微分した時は0にならないのに、どうしてここではf(x)をy微分すると0になるのでしょうか。 三角関数の積分 1/三角関数 の積分は必ずできると聞いたのですが、本当でしょうか。 例えば 1/sinx です。 ∫1/sinxdx を試してみたのですが、うまくできませんでした。 ∫sinx/sin^2xdx とし、 ∫sinx/(1-cos^2x)dx cosx=tとおく。 dx = -1/sinx 与式 = -∫1/(1-t^2)dt = -(1/2)∫{(1/1+t)+(1/1-t)}dt = log|sinx| + C となりました。 しかし、これを微分しても与式になりません。 どこか間違っているのでしょうか。 答えでは、log|tan1/2| となっていたと思います。 あと、 ∫1/cosxdx と ∫1/tanxdx も答えだけでも良いので教えていただきたいです。 微分 y=sinx/√(1+cos^2x)を微分してくれませんか? 特に解までの過程を書いてください。 答えは 2cosx/√{(1+cos^2x)^3}です。 お願いします。 教えてください!微分 定期試験のため、深夜まで勉強していてもよく分からない問題がありました。 申し訳ないのですが、頭脳明晰な方、よかったらぜひ教えてください。 宜しくお願い致します。 1、次の関数を微分しなさい。 (1)e^3x logx+sinx^2 (2)log2x/(e^x+1) (3)y=3^x+5^x (4)3^x+sinx 2、ロピタルの定理を用いて次の極限値を求めなさい。 lim(n→π/2)(cos^2x)/1-sinx 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分 微分の課題に取り組んでるのですが、行き詰まってしまい、果たしてこれでいいのか?と悩んでいます。 教えて頂けると助かります。 以下3問、微分するのですが、答えがこれでいいのか不安です。 1)y=(2x+3)/(x^2+1)を微分して、 これが、y\'=-2(2x^2+3x-1)/(x^2+1)^2まで計算できたのですが、これで終わって良いのでしょうか? 2)y=1/(1+cosx)を微分するのですが、これも y\'=sinx/(1+cosx)^2までで止まってしまいます。 3)y=√1+x^2 を微分(ルートの中は1+x^2です) 初歩的な問題でお恥ずかしいのですが、参考書等を見て自分なり考えてもなかなか解けません。周りに数学得意な人もいなく困ってます。宜しくお願いします。 微分積分の問題の解き方を教えてください。 微分積分の問題の解き方を教えてください。 1、lim log10(1+h)/h 極限値 h→0 2、Y=sin^3(X)cos^2(X) 微分 3、Y=√(sinX) 微分 4、Y=X^2(sin2X) 微分 よろしくお願いします。 微分等です。どうかよろしくお願いします。 f(x)=sinx^2/2+cosx^2のグラフ上の点x=4/Π の点にある接線を見つけなさいとあるのですが、どうしても解決できません。答えは、12x-25y-3Π+5=0です。おそらく、微分する必要があると思うのですが、その微分が解決できず困っています。 もう一問質問させてください。 x^2/4-y^2/5=1のグラフに対して、法線がy=-2/3x+7である、接線を見つけなさい。答えへは3x-2y-4=0か3x-2y+4=0です。これに関しては全く分かりません・・・。 そんなに簡単な問題ではないと思いますが、どうか何とぞ詳しくアドバイスをお願いします。 微分のやり方で困ってます y=cos^-1 / sinx の微分で商の微分法を使って計算したところ、 y'=(-1-cos^-1x * cosx * √(1-x^2)) / (sinx * √(1-x^2)) となりました。これで大丈夫でしょうか?? 教えてください!お願いします。 微分の問題が解けません!! (1)x^2tanx を微分しろとあり、 答えが x(x+sin2x)/cos^2x になっているのですが、 どうしてそうなるのかが理解できません。 商の微分公式を使うのか、積の微分公式を使うのか… あともう一問、 (2)cotx とはなんなんでしょうか? cosとtanをかけたのでしょうか? 分からなくて解けません… お優しい方、回答お願いします!! 三角関数 微分 y=x^2sinx の微分の答えをお願いします。 途中式もお願いします。 微分の問題なのですが この関数を微分するのですが。 y=log|(1-sinx)/(1+sinx)| y=(2+sinx)^cosxの微分 y=(2+sinx)^cosxを微分するんですが、 y'=cos^2(x)*(2+sinx)^(cosx-1) こんな素直に答えが出て良いものなのでしょうか。 違ってる気がしてなりません。 本当の答えはどうなるのですか。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
わかりやす回答ありがとうございます。 参考にさせていただきます。