- ベストアンサー
にゃんこ先生の自作問題、n点が同一直線上にある条件
にゃんこ先生といいます。 2次元以上の空間に、異なるn点があったとします。 {1,2,3,…,n} と名前をつけます。 もし、 {1,2,3}が同一直線上にあり、 {2,3,4}が同一直線上にあり、 {3,4,5}が同一直線上にあり、 …、 {n-2,n-1,n}が同一直線上にある ことがわかれば、n点全部が同一直線上にあることがわかります。 そのように3点の組が同一直線上にあるという条件を書き出して、 n点全部が同一直線上にあることと同値にするには、 本質的に上記の場合以外にあるのでしょうか? (本質的に同じとは、点の名前を適当に付け替えれば上記の条件と同じになるという意味です。) また、何種類くらいの方法があるのでしょうか? さらに、同一平面上などと発展させていけば、なにか面白いことでもあるでしょうか?
- みんなの回答 (4)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (3)
- stomachman
- ベストアンサー率57% (1014/1775)
回答No.3
- echoes_x86
- ベストアンサー率65% (21/32)
回答No.2
- rabbit_cat
- ベストアンサー率40% (829/2062)
回答No.1
お礼
ありがとうございます。 3点の組が同一直線上にあるという条件を書き出して、 n点全部が同一直線上にあることと同値にするには、 任意の3点の組に対して、別のある3点の組が存在し、それらの点集合としての共通部分が2点以上あればよいということがわかりました。 でも、そもそも同一直線上にあるという意味は、上記のこと自体を定義とするか、斉次座標として行列を作ったときのrankを2であることを定義とするかなのですね。 何種類くらいの方法があるのかを考えることくらいしかおもしろいことはなさそうです。何種類かを考えること自体も、それほど興味深くはなさそうです。 3次関数上に、9点{1,2,…,9}があるとき、 {1,2,3},{4,5,6},{1,4,7},{2,5,8},{3,6,9}がそれぞれ一直線上にあれば、{7,8,9}も一直線上にある。 調べてみれば、これは参考サイトのパスカルの定理の拡張の、3次曲線が3次関数や3直線になった場合に対応しているようですね。 http://www.geocities.jp/ikuro_kotaro/koramu/715_p4.htm