- ベストアンサー
合成関数の偏微分法を用いた解き方
いつもお世話になっています。 以下の問題を解いてみたのですが、あっているのか自信がもてません。 (特に、(4)(5)のsinθ,cosθが含まれるケース) 間違いなど、あればご指導のほど、よろしくお願いいたします。 【問題】 「合成関数の偏微分法」を用いて、継ぐの合成関数についてZu,Zv(またはZθ,Zr)を求めよ。 (2) z=x^2-y, x=u+v, y=uv Zu = Zx・Xu + Zy・Yu = 2x・1+(-1)・v=2x-v Zv = Zx・Xv + Zy・Yv = 2x・1+(-1)・u=2x-u (3) z=e^x・sin(y), x=u-v, y=uv Zu = Zx・Xu + Zy・Yu = e^x・sin(y)・1+e^x・cos(y)・v = e^x・sin(y)+v・e^x・cos(y) Zv = Zx・Xv + Zy・Yv = x^x・sin(y)・(-1)+e^x・cos(y)・u = -e^x・sin(y)+u・e^x・cos(y) (4) z=x+y, x=r・cosθ, y=r・sinθ Zθ= Zx・Xθ + Zy・Yθ = (1)・(-r・sinθ)+(1)・(r・cosθ) = (-r・sinθ)+(r・cosθ) = -r(sinθ-cosθ) Zr = Zx・Xr + Zy・Yr = (1)・(cosθ)+(1)・(sinθ) = sinθ+cosθ (5) z=x^2+2xy, x=r・cosθ, y=r・sinθ Zθ= Zx・Xθ + Zy・Yθ = (2x+2y)・(-r・sinθ)+(2x)・(r・cosθ) = 2{(x+y)(-r・sinθ)+x(r・cosθ)} = -2r{(x+y)(sinθ)-x(cosθ)} = -2r(x・sinθ+y・sinθ-x・cosθ) = -2r(r・cosθ・sinθ+r・sinθ・sinθ-r・cosθ・cosθ) = -2r^2(cosθ・sinθ+sinθ・sinθ-cosθ・cosθ) = -2r^2(sin^2θ+cosθsinθ-cos^2θ) Zr = Zx・Xr + Zy・Yr = (2x+2y)・(cosθ)+(2x)・(sinθ) = 2{(x+y)・(cosθ)+(x)・(sinθ)} = 2{x・cosθ+y・cosθ+x・sinθ} = 2{r・cosθ・cosθ+r・sinθ・cosθ+r・cosθ・sinθ} = 2r{cosθ・cosθ+sinθ・cosθ+cosθ・sinθ} = 2r{cos^2θ+2・sinθ・cosθ} = 2r・cosθ{cosθ+2・sinθ} 以上、よろしくお願いします。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
(2) OK (3) > = x^x・sin(y)・(-1)+e^x・cos(y)・u 「x^x」→「e^x」 以外はOK (4) OK (5) 合っています。 ただし最終的な式の整理の仕方は色々ありますのでたの式の答もありえます。 たとえば Zθ=-r^2(sin2θ-2cos2θ) Zr=r(1+cos2θ+2sin2θ) という式の答もあります。
その他の回答 (1)
(2) OKです。 (3) OKです。
お礼
お返事が遅くなりました。 早速、チェックしていただき、ありがとうございました。 助かりました。
お礼
いつも丁寧なアドバイスをしていただき、ありがとうございます。 (5)の式の書き方はいろんな方法があるんですね。 大変参考になりました。 ありがとうございました。