ベストアンサー 連立一次方程式 2003/01/06 00:17 連立一次方程式 x1+x2=a x2+x3=b x3+x4=c x1+x4=d が解を持つためのa、b、c、dの条件を求めたいのですが、どうしても解けません。 どなたかアドバイスをお願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー oshiete_goo ベストアンサー率50% (374/740) 2003/01/06 01:08 回答No.1 x1+x2=a ・・・(1) x2+x3=b ・・・(2) x3+x4=c ・・・(3) x1+x4=d ・・・(4) (1)+(3) より x1+x2+x3+x4=a+c・・・(5) (2)+(4) より x1+x2+x3+x4=b+d・・・(6) (5)と(6)が矛盾しないためには a+c=b+d・・・(*) が必要で, このとき逆に(*)の下に x1=(2a-b+d)/4 x2=(2a+b-d)/4 x3=(b+2c-d)/4 x4=(-b+2c+d)/4 などの解が確かに存在して十分. 本当かどうかはご自分で確認下さい. 質問者 お礼 2003/01/06 18:46 すばやい回答ありがとうございます。 a+c=b+d が条件になるんですね。 もっと複雑な式になるのかと思っていました。 ありがとうございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 連立方程式が解けなくて、困っています。 こんばんは。下記連立方程式について、解を模索しております。 (x1+x2)・A=A (x3+x4)・B=B A・x1+B・x4=C A・x2+B・x3=D (A、B、C、Dは定数です。) 行列でも考えてみたのですが、解なしという答えが出てしまいました。 上記連立方程式で、x1、x2、x3、x4を導出することはできるでしょうか。 以上、よろしくお願い致します。 連立方程式 以下の連立方程式の解法を御教授頂きたいです。 (a1*x1+a2*x2)^2+(a1*x3+a2*x4)^2=a3^2 (b1*x1+b2*x2)^2+(b1*x3+b2*x4)^2=b3^2 (c1*x1+c2*x2)^2+(c1*x3+c2*x4)^2=c3^2 (d1*x1+d2*x2)^2+(d1*x3+d2*x4)^2=d3^2 a1~b3、b1~b3、c1~c3、d1~d3は定数です。 地道に式を変換してx4、x3と代入してx4、x3を消していき、 x1、x2の連立方程式まで算出しましたが、式が複雑化し、 解けなくなりました。 未知数が4で、式が4つあるので解けるとは思いますが、 うまくいきません。 どうかアドバイスをお願い致します。 連立方程式 aを実数の定数として、x,yの連立方程式(a+2)x+3y=a , (2a-1)x+ay=3を考える。連立方程式がただ一つの解をもつとき、x,yをそれぞれ求めよ。(aを用いて) このような問題なのですが、そもそも連立方程式がただ一つの解をもつ条件とは何なのですか?教えて下さい!!! 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 制約条件のある連立多元方程式の解法2 連立多元1次方程式で制約条件がある場合について 再度質問させてください。 未知数をx1,x2,x3、その他はある定数で、 a1・x1+b1・x2+c1・x3 = A a2・x1+b2・x2+c2・x3 = B a3・x1+b3・x2+c3・x3 = C 制約条件が0<x1,x2,x3<1としたときの解法を前回伺いましたが、 ご回答で、 「まず方程式の解(x1=z1,x2=z2,x3=z3)を得たあと 制約条件を満たすもっとも近い解は、 距離の2乗= (z1-x1)^2 + (z2-x2)^2 + (z3-x3)^2を最小にする x1,x2,x3を求める問題に帰着されます。」 さらにシンプレックス法を使えばと言うアドバイスを頂きました。 そこでシンプレックスについていろいろ見てみましたが、目的関数がこのように2次になっている場合は良く分かりませんでした。 どうすれば良いのでしょうか? 制約条件のある連立多元方程式の解法 連立多元1次方程式で制約条件がある場合にその近似解を求めたいのですが、どのように解けばよいのでしょうか?数値計算ソフト(Mathcad)では勝手に解いてくれるのですがそのアルゴリズムが知りたいのです。 例えば、未知数をx1,x2,x3、その他はある定数で、 a1・x1+b1・x2+c1・x3 = A a2・x1+b2・x2+c2・x3 = B a3・x1+b3・x2+c3・x3 = C これに0<x1,x2,x3<1という制約条件があった場合などです。 よろしくお願いします。 3元連立1次方程式の解を持つ条件とその解 3元連立1次方程式の解を持つ条件とその解 次の3元連立1次方程式(1)x+2y+3z=a (2)2x+3y+4z=b (3)3x+4y+5z=c の解を持つ条件とその解を求めます。-2x-y=8a-3b,2y+4z=3a-c,x-z=-3a+2bなどの関係式を求めたのですが、そこからの展開がわかりません。よろしくお願いします。 線形代数 連立方程式 連立方程式の問題なのですが、方向性はわかっていると思うのですが、うまい形にもっていけません。教えてください。 次の連立方程式が解を持つようにtを定め、そのときの解を答えよ。 a-2b+2c-d+2e=2 4a-9b+8c-2d+7e=8 3a-7b+4c-d+7e=t a-2b+3c-d-e=2 不定を含む連立方程式 x * 0 = 0 という方程式では、x は不定(解はすべての数)だと思います。 x * 0 = 1 という方程式では、不能(解はない)だと思います。 では、連立方程式なら、解はどうなるでしょうか? (A) x * 0 = 0 (B) y * 0 = x という連立方程式を解を答えてください。 連立方程式はなぜ逆の確認をしなくていいのか 『mを0でない実数とする。2つのxの2次方程式x^2-(m+1)x-m^2=0とx^2-2mx-m=0がただ1つの共通解をもつとき、mの値とそのときの共通解を求めよ。』 という問題で、共通解をαとおいてそれぞれの方程式に代入し、それらをαとmについての連立方程式とみて解き、その結果得られるα、mの値が条件を満たしているとは限らないから確認する…この「その結果得られるα、mの値が条件を満たしているとは限らないから確認する」というのがよくわかりません。 a=bかつc=d⇒a+c=b+dは成り立つけれどこの逆は成り立ちませんよね?だからなのかな?と思ったり、2つの方程式f(x)=0、g(x)=0の辺々を引いて求まるαは2つの放物線y=f(x)、y=g(x)の共有点でしかないからそれぞれの放物線とx軸との共有点とは限らないからかな?等一応自分でも考えたのですが、考えているうちに、ではなぜいつも連立方程式を解くときに逆の確認をしなくてもいいのだろう?と疑問を抱きました。 今回の問題の補足に、「共通解が存在すると仮定して計算しているが、一般に2つの方程式を足したり引いたりしてできる方程式の解は、もとの方程式の解であるとは限らない。」のように書いてあったのもあって疑問に思いました。 行列と連立1次方程式 行列と連立1次方程式 連立1次方程式AX=Oの解 (1)連立1次方程式{ax+by=p⇔(a b)(x)⇔(p)⇔AX=Pと行列で表される。 cx+dy=q (c d)(y) (q) (1)の方程式で、P=Oのとき (2)方程式AX=Oは常にX=0を解にもつ (3)方程式AX=OがX=O以外の解をもつ⇔⊿(A) 解説 [1]A^-1が存在するとき AX=Oから、A^-1(AX)=A^-1O ゆえにX=O→解はx=y=0だけ [2]A~-1が存在しないとき すなわち ⊿(A)=ad-bc=0のとき,ad=bcであり、ax+by=0とcx+dy=0は、ともに定数項が0であるから同値となる。 教えてほしいところ 1.(3)の場合なんですが確かに、X=Oを解にもたないのでO以外と言えますが、O以外で必ず解をもつといえる理由を教えてください また、⊿(A)=0と同値であるといえる理由を教えてください。 2.ax+by=0とcx+dy=0は確かに定数項は0ですが、a=c,b=dかどうかわからないと同値とはいえないのでは?? 2元2次連立方程式 次の連立方程式の解き方を教えてください。 ax^2+bxy+cy^2=0 dx^2+exy+fy^2=0 ここで、a,b,c,d,e,fは定数とする。2つの未知数に対して、2つの方程式があるので、理論上は解けると思うのですが、自明な解(x,y=0)しか求めることができませんでした。 どなたかこの2元2次の連立方程式の解き方を教えてください。よろしくお願いいたします。 連立微分方程式 この微分方程式が解けません。 ご教授願います。 kは正の定数とする {x1}" = d(2){x1}/dt(2) {x2}" = d(2){x2}/dt(2) として、 連立微分方程式 _ | {x1}" = -k{x1}-k({x1} - {x2}) < |_{x2}" = -k({x2} - {x1})-k{x1} の一般解を求めよ。 どうしても解けません。 解き方を教えてもらいたいです。 よろしくお願いします 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 行列の連立方程式 (mathematica) mathematica4.1を使用して,行列で表した連立方程式を計算したいと思っています.例えば A= a11 a12 a13 a21 a22 a23 a31 a32 a33 B=b11 b12 b13 b21 b22 b23 b31 b32 b33 C,Dも同様に定義して A .x+B .y=1 C .x+D .y=0 x=x1 y=y1 x2 y2 x3 y3 のような連立方程式のx,yについて解きたいのですが,どのようにmathematicaで表現すればよいかが分かりません. どなたか教えてください.お願いします. 当然ではありますが,A,B,C,Dはすべて既知としています. 行列の連立方程式の問題がわかりません。 行列の連立方程式の問題がわかりません。 次の連立1 次方程式が自明な解以外の解を持つようなa をもとめよ. ax1 + x2 = 0 x1 + (a - 1)x2 + x3 = 0 x2 + ax3 = 0 という問題なのですが、どなたかわかりやすく解説していただけないでしょうか? 連立方程式。 連立方程式。 2x+3y=6 x+ay=3a の解が x=-3、y=bのとき、 a、bの値を求めなさい。 分かりません… よろしくお願いします。 この連立方程式の問題を教えてください。 この連立方程式の問題を教えてください。 問題は 連立方程式 xの2乗+yの2乗=a , xの2乗-xy+yの2乗=bがx>0、y>0をみたす解を少なくとも1組持つために実数a,bのみたすべき条件を求め、点(a,b)の存在範囲として図示せよ。 です。 行列の連立一次方程式 問題は 連立一次方程式(*)Ax=bの1つの解をx_0とする。同次形の連立一次方程式(**)Ax=0の解x_1に対しx_0+x_1は(*)の解であること示せ。(→ここまではわかりました。)また(*)の解はすべてx_0+x_1と書けることを示せ。 「(*)の解はすべてx_0+x_1と書けることを示せ。」 のところなんですが、回答には「(*)の解をxとすると(→この時点でよくわかりません。。なぜ置いたのか…)A(x-x_0)=Ax-Ax_0=b-b=0となるから、x_1=x-x_0とおくとx_1の同次形の方程式の解でx=x_1+x_0.」と書いてあります。 よろしくおねがいします。 連立方程式の解 連立方程式の解 連立方程式{ax+by=9 の解が bx-ay=-2 x=4,y=-1 であるときa,bの値を求めなさい。 この問題が分かりません! 解き方を教えてください! お願いします! 連立方程式の解の集合が部分空間となる x1 - x3 = 0 8x1 + x2 - 5x3 - x4 = 0 x2 + 4x3 - ax4 = 0 x1 - x2 - 3x3 + 2x4 = b という連立1次方程式があり、 すべての解の集合が4次元実ベクトル空間の部分空間となるときのaとbの条件を求めよ という問題があるんですが、 問題の意味がいまいちよく分からないのですが、 これはどのようにして解けばいいんでしょうか? ベクトルについての理解が少し足りないので部分空間や解空間について調べてみてもいまいちよく分からないんです。 連立方程式 こんばんは。 本来はN元連立方程式を考えているのですが、ここでは5元連立方程式として質問させていただきます。 今、下記の5元の連立方程式を考えます。 u[0]-2*u[1]+u[2]=a u[1]-2*u[2]+u[3]=b u[2]-2*u[3]+u[4]=c u[3]-2*u[4]+u[5]=d u[4]-2*u[5]+u[6]=e (a~eは定数で、左辺はu"を差分表示したものです) これでは方程式の数が2つ少なくて解けないので、条件としてu[0]=u[5]、u[1]=u[6]とします。 上の条件を考慮して行列になおすと、 -2 1 0 0 1 1 -2 1 0 0 0 1 -2 1 0 0 0 1 -2 1 1 0 0 1 -2 となり、これをガウス・ジョルダン法で解こうと思っているのですが、行列式が0になってしまい解けません。つまりこの連立方程式は自明な解しか存在しないと言うことでしょうか?ガウス・ジョルダン法以外の別の解く方法か良いテクニックがありましたらアドバイスお願いします。 また分かりにくい場合は補足要求お願いいたします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
すばやい回答ありがとうございます。 a+c=b+d が条件になるんですね。 もっと複雑な式になるのかと思っていました。 ありがとうございました。