• 締切済み

数学での質問です。一応背理法です。一緒に悩んでみてください。

数学で、質問です。ちょっと悩んでみてください。 x=0.9999999999999999999999999・・・・・・・・・999999999 という循環小数と仮定する。 10x=9.99999999999・・・・・・・・・・・・・・・・9999999999999 であり、 10x-x=9.99・・・・・・9999-0.9999999・・・999 ∴是を解いて、x=1となり、これはx=0.999・・・999の循環小数であることに矛盾する故に、x=1という抽象数の存在に矛盾するので、数学は成り立たないのではない。 この証明は正しいですか?

みんなの回答

noname#130082
noname#130082
回答No.7

x=1 であることと x=0.999・・・999の循環小数であることは、特に矛盾していないので、間違っています。 これは単に、1=0.999・・・ であることの証明になるだけです。 実数を無限小数で表現することはできますが、表し方が一通りとは誰も言っていません。循環小数というのは、数の表現の仕方に関する言葉であって、数そのものの性質ではありません。(有理数は必ず循環小数で表せる、ということもありますから数の性質も入ってはいますが。) ちなみに、1は 1.000… の省略形と見なせますから、これも0が無限に循環する循環小数とも言えます。 あと、 >x=0.9999999999999999999999999・・・・・・・・・999999999 という書き方は、「最後の桁の9」があるように見えますが、無限小数には最後の桁というのはありませんので、ちょっと誤解を招く書き方だと思います。

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.6

> x=1となり、これはx=0.999・・・999の循環小数であることに矛盾する ひとつの数の小数表示が一通りでなければならない理由は、何もない。 よって、矛盾しない。 1 と書かれる数と 0.999… と書かれる数は、同じ数である というだけのこと。 数そのものと、その数の表示方法は、別のものだ。 蛇足だが、1 は循環せず 0.999… は循環しないから食い違うと 考えるのも間違い。 有限小数は、有限小数である部分が循環小数の非循環部分 (0.34565656… の 0.34 にあたる部分)であって、 その下に 0 が一桁循環している と捉えれば、循環小数の一種である。 そう考えると、循環小数=有理数、非循環小数=無理数 となって、 話がずいぶんスッキリする。 有限小数 無限小数 循環小数      非循環小数 という分け方は、良くない。 循環小数 有限小数      (無限)循環小数 非循環小数 と分けて理解すべき。

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.5

x=0.9999999999999999999999999・・・・・・・・・999999999 桁が途中で終わってるなら計算そのものが間違い 途中で終わってない,ずっと9が続くのであれば その証明は正しい. すなわち,1=0.99999999999...99999....... したがって,そもそも >これはx=0.999・・・999の循環小数であることに矛盾する故 途中で終わらないのあれば何も矛盾しない >x=1という抽象数の存在に矛盾するので、 抽象数なんていう怪しげな言葉の定義は? そしてそれが「存在する」ということの定義は? >数学は成り立たないのではない。 何をいいたいのか・・・文意が不明. 結局「数学は成り立たない」といいたいのか 「成り立つ」といいたいのか・・さっぱりわからんです. =============== 1=0.9999999999.... は何度も何度もでている質問で 「この等式は正しくない」と主張する人もごくたまにいますが, 立派に成立する式です. 単に10進法の表記に類する問題にすぎません

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.4

まず ・何を言っているのか理解できない というのが問題かな. あと, ・x=1 が x=0.999... という循環小数であることと「どこがどのように矛盾するのか」を書く必要があるな. ひょっとして, 「数の表し方は一意である」と思っている? ・「抽象数」って何? ちなみに 「0.9999... という循環小数」 はどのように定義しているんですか?

  • orcus0930
  • ベストアンサー率41% (62/149)
回答No.3

0.9=1-10^(-1) 0.99=1-10^(-2) 0.999=1-10^(-3) これを繰り返して、9がn個続く数は 0.999……999=1-10^(-n) と表せるので、9が無限個続く循環小数は 0.999999……=lim[n→∞](1-10^(-n))=1 となるんじゃないかな? 1/3=0.3333…… の両辺を3倍しても 1=0.999999999…… ってなるよね。

  • info22
  • ベストアンサー率55% (2225/4034)
回答No.2

質問のように 小数の最後の桁が9で終わる有限桁数では 10x-x=9.99・・・・・・9999-0.9999999・・・999 =8.99 ... 991 になりますので、 > ∴是を解いて、x=1となり、 とはなりませんので証明は正しく無いですね。 無限桁数の循環小数では正しいようです。 しかし、無限に小数の桁の引き算を実行できない(あくまで有限桁の計算の法則を延長解釈して類推適用しているだけ)ので本当に正しいと断言することは難しいですね。 それなら、0.9999 .... (9が無限に続く)を1と定義すれば 類数適用しないですみます。 そこで、数学では 循環小数の0.9999 .... (9が無限に続く) は数学では1と同じものと定義します。 そうすれば、参考URLにある 循環小数は有理数であり、分母も分子も整数である分数で表せる。 ということが言えて 0.9999 .... =1 も矛盾しません。 そうすれば 1/3=0.3333 .... も両辺3倍して 1=0.9999 .... も定義によって矛盾無く説明できます。 参考) http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q143319234

参考URL:
http://www.tcat.ne.jp/~s-ash/nue/empire/pc/knowledge/knowledge5.htm
noname#74443
noname#74443
回答No.1

門外漢ですが…  ですから、数学的には 0.99999999…=1 としてると思いますよ。

kengoukyou
質問者

お礼

え・・・・・・・・・・

関連するQ&A