ベストアンサー 等角写像について 2008/06/11 02:42 等角写像についての質問です。 複素平面zとζがあったとすると zのζへの写像は、いかなる写像も等角写像ですか? みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー BASKETMM ベストアンサー率29% (240/806) 2008/06/11 07:45 回答No.2 ご質問の主旨も意味もが今ひとつ分かりません。色々な答え方をしてみます。ギリシャ文字は書きにくいので、z平面から、w平面への写像とします。 0.写像、等角、等角写像の意味を見直しましょう。 1.等角でないものもあるから、等角写像という名前を付けた。(常識的説明) 2.z平面全体をw平面の一点例えば、原点に写像することを考えれば、これは等角とは言えませんね。(反例がある!) 3.手持ちの、本(函数論、大正15年発行)には、次のように書かれています。函数 w=f(z)ガz平面上ノ面分Aニ於テ正則ナルトキハ、f’(z)=0なる点ヲ除クノ他、Aハコノ函数ニヨリテw平面上ニ等角ニ寫像セラル。(数学的証明あり) この条件は必要十分と私は理解しております。およその表現をすれば、写像函数が微分可能でなければ、等角ではないと言うことでしょう。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) cynicured ベストアンサー率20% (1/5) 2008/06/11 07:36 回答No.1 wikipedia にもあります。正則でない関数は違うようです。 eg. f:z'∈z→z''∈ζ, z''=|z'| (明らかに原点付近) 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 等角写像について 2次元のラプラス方程式を解く手法に複素関数を用いた等角写像と呼ばれる方法がありますがそれはどのようなものなんでしょうか? またどのような実験などに応用できるものですか? 等角写像の問題です。 等角写像の問題です。w=(2zi-1)/(z+2i)により、|z|=1と|z+5i/4|=3/4の2つの円はどのような図形に写像されるでしょうか。 また、|z+5i/4|=3/4をw=(2zi-1)/(z+2i)により繰り返し写像する。n回写像したときの図形と虚軸の交点の値とnを大きくしたときどのような図形になるか。 どなたか、わかる方よろしくお願いします。 複素平面上の写像について 複素平面上の写像について 複素平面(z平面)上の領域 z:0<argz<π/4 が 写像f(z)によって複素平面上のどのような領域に写されるか. f(z)=z/(z-1) よろしくお願いします. 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 複素平面上の写像について 複素平面上の写像について わからないのでよろしくお願いいたします. 複素平面(z平面)上の領域 z:0<Rez<π,Imz>0 が 写像f(z)によって複素平面上のどのような領域に写されるか. f(z)=cos z よろしくお願いします 等角写像について 等角写像に物理的意味はあるのでしょうか。 写像の問題について 写像の問題が分かりません。どなたかわかる方、回答よろしくお願いします。 (1)関数w=z^l(lは正の実数)によって、z平面上の領域0<argz<θはw平面上のどのような領域に写像されるか。 (2)z平面上の領域Ψ<argz<π-Ψ(0<Ψ<π/2)をw平面の上半面(0<argw<π)に写像する関数を求めよ。 (3)関数w=z+1/zによる、z平面の原点を起点とする半直線の写像を求めよ。また、この関数による写像がz=1で等角でないことを示せ。 (4)z平面上の領域x^2/cos^2Ψ-y^2/sin^2Ψ<4をw平面の上半面(0<argw<π)に写像する関数を求めよ。ただし、Ψは0<Ψ<π/2 複素平面上の写像について わからないのでよろしくお願いいたします. 複素平面(z平面)上の領域 z:0<Rez<π,Imz>0 が 写像f(z)によって複素平面上のどのような領域に写されるか. f(z)=cos z 等角写像 等角写像 |z+5i/4|=3/4をw=(2zi-1)/(z+2i)により繰り返し写像する。 n回写像したときの図形と虚軸の交点の値とnを大きくしたときどのような図形になるか。 という問題で なぜ 「 n回写像したときの図形は、 実数軸(w=u)の直線または|w-(5i/4)|=3/4の方程式で示される円となり、 虚軸との交点は 写像か実数軸(v=0)のとき、原点(0,0)となり 写像が円のとき(0,5/4±3/4)=(0,2)と(0,1/2)になる。 」 となるのでしょうか? |w-(5i/4)|=3/4は|z+5i/4|=3/4に写像されないのではないでしょうか? n回写像したときの図形は、 n=1のとき実軸の直線で n≧2のとき 中心 i(1+9^{1-n})/(1-9^{1-n}) 半径 2/{3^{n-1}-(1/3^{n-1})} の円となり 虚軸との交点は n=1のとき0で n≧2のとき i[(1+9^{1-n})/(1-9^{1-n})±2/{3^{n-1}-(1/3^{n-1})}] になる。 nを大きくしたとき 点 i に収束する のではないでしょうか? f(z)=(2zi-1)/(z+2i) g(z)=(z-i)/(z+i) h(z)=z/3 とすると g^{-1}(z)=i(z+1)/(1-z) f=g^{-1}hg だから n回写像する変換は f^n=(g^{-1}hg)^n=g^{-1}(h^n)g と表される 中心-5i/4半径3/4の円 |z+5i/4|=3/4をgで写像すると w=g(z)=(z-i)/(z+i) z=i(1+w)/(1-w) |z+5i/4|=|i(1+w)/(1-w)+5i/4|=3/4 3=|w| 中心0半径3の円となる 中心0半径3の円 |z|=3をh^nで写像すると w=(h^n)(z)=z/3^n |w|=|z/3^n|=3^{1-n} 中心0半径3^{1-n}の円となる 中心0半径3^{1-n}の円 |z|=3^{1-n}をg^{-1}で写像すると w=g^{-1}(z)=i(z+1)/(1-z) z=(w-i)/(w+i) |z|=|(w-i)/(w+i)|=3^{1-n} n=1のときw~=wだから実軸となり,虚軸との交点は0 n>1のとき |w-i(1+9^{1-n})/(1-9^{1-n})|=2/{3^{n-1}-(1/3^{n-1})} だから 中心i(1+9^{1-n})/(1-9^{1-n}) 半径2/{3^{n-1}-(1/3^{n-1})} の円となる 虚軸との交点は i[(1+9^{1-n})/(1-9^{1-n})±2/{3^{n-1}-(1/3^{n-1})}] になる。 n=2のとき 中心i(1+9^{1-n})/(1-9^{1-n})=5i/4 半径2/{3^{n-1}-(1/3^{n-1})}=3/4 n=3のとき 中心i(1+9^{1-n})/(1-9^{1-n})=41i/40 半径2/{3^{n-1}-(1/3^{n-1})}=9/40 ここでnを大きくすると 中心は lim_{n→∞}i(1+9^{1-n})/(1-9^{1-n})=i に近づく 半径は lim_{n→∞}2/{3^{n-1}-(1/3^{n-1})}=0 に近づく 虚軸との交点は 点 i に近づく 複素関数 等角性 大学の複素関数論でf(z)=z^2と1/zの等角性を高校数学の範囲で調べよという問題が出ました。 すごい長い計算ではできたのですが、回転行列を用いてスマートにできるみたいです。方針を教えてください。 よろしくお願いします。 写像の問題です。 写像f:C→C f(z)=c(z+i) (c∈C) この写像が連続であると言いたいのですが、 任意のε>0に対し、ある0<δ<ε/max(1,|c|)がとれて、 任意にz,z'∈Cをとり、|z-z'|<δなら|f(z)-f(z')|=|c(z-z')|<|c|δ<ε となりfは連続である。 と示すだけでいいのですか? 複素平面なので、距離空間と同じ方法で証明してよいのか、開集合を考えて位相空間として証明しないといけないのかが分かりません… よろしくお願いします。 複素関数~単位円を単位円に写像する変換について~ 複素関数で単位円を単位円に写像する変換についてお尋ねします。 z 平面の単位円周をω 平面の単位円周に写像する1次分数変換は,以下の(1)、(2)のいずれかの形で表されることが一般に知られているそうなのですが、(1)はわかるとして、(2)の特に分数の分母の部分になぜ (α^{*}・z - 1) が来るのかがよくわかりません。(αはz 平面の単位円周の中心を表していると思っています。) もしも、わかられる方がおられれば、お教え頂けないでしょうか? (1) ω = γ/z ( | γ | = 1) (2) ω = γ(z - α)/(α^{*}・z - 1) ( | γ | = 1, | α | = 1, α^{*}はαの共役複素数) 何卒、よろしくお願いします。 複素数 等角写像の問題 『W=(az+b)/(cz+d) (a,b,c,d は実数で、ad-bc=1 が成り立つ) このWについて次の問題に答えよ。 (1)zの虚部が正であるとき、Wの虚部も正であることを示せ。 (2)z平面において実軸上に中心がある上半面は、W平面の実軸上に中心のある上半面、又は実軸に垂直な半直線に写像されることを示せ。』 という問題なのですが、これらはどちらもW=u(x,y)+iv(x,y)と考えて解けばいいのでしょうか。 またad-bc=1の関係式はどのようにして用いるべきでしょうか。 どなたか分かる方がいましたらアドバイスなどよろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 商写像の問題です 商写像の問題です。 Z:整数全体の集合 複素平面C上の同値関係~を z~z'⇔z-z'∈Z 商集合Y=C/~と 射影p:C→Yを考える。 Yに商位相を導入し、位相空間とみなす。 (1)C上の写像 f(z)=c(z+i) (c∈C,i:複素数) に対し、写像g:Y→Yでp・f=g・pとなるものが存在するための係数cの条件を求めよ。 (2)(1)において写像gが存在するとき、gは連続であることを示せ。 pが連続かつ開写像といいたいのですが、どの条件からいえますか? Yに商位相を導入するだけでpは連続かつ開写像なんですか? (1)はfが連続となるための条件を求めると言い換えていいですよね? 複素関数論における等角写像と工学問題 複素関数論のテキストの後方の25%ぐらいのところまで来ると、等角写像が出てきます。このあたりは現実的な工学的問題と関連が出てきます。近年の計算機時代のものと異なり、古典的なアプローチであり、効果は限定的にはなると思いますが。 工学問題はモノの形状をできるだけ正確に表現できるというところがポイントなので、航空機の翼型などを表現するのに使えるようなのです。しかし、複素関数論の本を読んでも航空力学関係の本を見ても以下のような疑問があります。 1.複素関数論では、複素数の空間の間での写像変換の式が正則であれば、変換前後で座標の交差角が変わらない、との説明があるが、それがどのように役立つのか見えにくいです。 2.航空力学ではその写像変換を複数回繰り返して解が求まる空間を求めて解を得る という風に読めます。シュワルツクリスフォッフェル変換ということになっていくようですが。 そこで疑問なのですが、工学として自分が対象としている複雑形状に対してどのような写像変換をしていけば解に到達できるのかの説明がないように思えます。航空力学の方ではなぜ、そのような変換を行って何を目指そうとしたのかが分からないので本を読んでも理論を鑑賞するだけになってしまってしまい、自分の問題に応用することができません。冒頭にも書いたように最近はこのような研究アプローチも少ないので大方の関心は少ないと思いますが、この理論を自由に自分の問題に応用するにはどうしたらいいのでしょうか。工学問題では数学的な厳密性がある程度犠牲になっても近似的にでも解が求まるという面はあり、と思っています。よろしくお願いします。 初めての複素関数の勉強 w=1/zで表される、複素平面z=x+iyから、複素平面w=u+ivへの写像を考える。z平面上の直線x=a(a>0)のw平面上の写像を求めよ。 という問題です。 この問題を解くにあたり、初めて複素関数の勉強をしました。 本を借りてきて調べると、どうやら虚軸または実軸に接する円になる、 というところまでは分かったのですが、円の中心と半径がどのように なるのかがよく分かりません。 この問題だと、円の中心と半径を求めろということだと思うのですが、 それでいいんですよね? 解き方を教えてください。 よろしくお願いしますm(_ _)m 南西等角図の平面図に貼り付け方 配管図の南西等角図を作成し、平面図に張り付けようとしたら、平面図に戻ってしまいますし、南西等角図にしようとすると図面全体が南西等角図になってしまいます。 平面図の中に配管図だけを南西等角図にさせる貼り付け方を教えて下さい。 AutoCADLT2007を使用しております、宜しくお願い致します。 等角写像 写真の(2)のw平面での角度を求めたいのですが、どのように解くのかわからないので教えていただきたいです。 同相写像についての問題がわかりません Cを複素数体,C⊃Uは単連結な開領域とします。 U⊃Fを有界な閉集合で閉包cl(F)⊂Uとします。 この時,リーマンの写像定理から, f:U→{z∈C;|z|<1}なる同相写像fが存在しますが, 0<∃r<1;f(F)⊂{z∈C;|z|≦r}となる事を示したく思ってます。 どうすればいいのでしょうか? z平面をw平面に写像する1次写像w=(az+b)/ z平面をw平面に写像する1次写像w=(az+b)/(cz+d)で、次の条件を満たす写像を求めなさい。ただし、a,b,c,dは複素数です。 (1)3点1-i,1+i,0を3点1+i,1-i,iに写像する。 この問題の途中式が全く分かりません。 途中式込みでよろしくお願いします。 不等角六角形 不等角六角形についての質問です。 正五角形もしくは正六角形以外で、 例えば六角形3個がどこかの辺でそれぞれ接する場合、どの辺で接していたとしても、3つが隙間なくピタリとはまるような辺の比の六角形は作れるのでしょうか?イメージとしては蜂の巣のように六角形の数が増えていっても、どれも隙間なく接しています。 正六角形では問題なくそれぞれ接するはずですが、それ以外の不等角六角形ではどうでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など