ベストアンサー 非同次2階線形微分方程式についてです 2008/02/11 21:49 非同次2階線形微分方程式の形と、一般解をどなたかお教えください。 またこのことを詳しく説明しているURLをご存知ならそちらも教えてくだされば幸いです。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー nktnystk ベストアンサー率80% (24/30) 2008/02/11 22:47 回答No.1 shine220さん こんにちは。 以下のサイトを参照してみてはいかがでしょうか? 参考URL: http://www18.ocn.ne.jp/%7Ehchiba/math/math8.pdf 質問者 お礼 2008/02/12 00:05 nktnystk様、こんにちは! 早速の回答ありがとうございます。 よく勉強したいと思います! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育自然科学物理学 関連するQ&A 非同次線形微分方程式の解 非同次線形微分方程式の解は、 「同次線形微分方程式の一般解+特殊解」 だと思うのですが、このとき、 「【同次線形微分方程式の一般解】は、非同次線形微分方程式の解である。」と言えるのでしょうか? 線形非同次微分方程式の解法について 線形非同次微分方程式の一般解は 同次方程式の一般解+特解 で求められるそうですが、何故、このようにして求められるかが分かりません。分かる方がいましたら教えてください。 1階非同次線形微分方程式の解法について 難しすぎてよくわからないので質問します。 いろんなサイトを見てもよくわからなかったので分かりやすい回答おねがいします。 みなさんから見れば、なぜこんなことも分からないの、なにを言っているの?と思うのかもしれませんが、丁寧に解説してくれるとありがたいです。 非同次方程式の一般解=同次方程式の一般解+非同次方程式の特殊解となるようですが、 なぜこれが成り立つのかわかりません。 いろんなサイトみたのですが、数式がいっぱい書いてあってなにがなんだかわからない状態です。 まだ、変数分離の解法しかやっていないので、難しいことを言われても分からなくなってしまいます。 まず、1階線形微分方程式は、dy/dx+f(x)y=g(x)などのように表されるということは分かりました。 そしてこのg(x)を0としたものが非同次となるわけですよね。 つまり、dy/dx+f(x)=0です。 そしてこの解法として、まずy=u(x)が同次方程式の一般解としようと書いてあります。 ですが、もうこの時点でよくわからないです。 なぜ一般解としようと考えたのかってとこに疑問があります。 特殊解でもなく、なぜ一般解なのかということです。 そして、これを代入すると、du(x)/dx+f(x)u(x)=0となるのはわかります。 ただ代入するだけなので。 次に、y=v(x)を非同次方程式の特殊解としようと書いてあります。 でもなぜ非同次方程式の特殊解にするのかわかりません。 同次方程式の特殊解と考えてはだめなのかと思ってしまします。 まさか適当においたとも思えませんし。 なにかの考えがあってのことだと思いますし。 ようするに、なぜこのようにおいたのか、道筋というか目的ってのがよく見えないのです。 いったいなにをやっているのか。 たぶん一般解と特殊解の関係?みたいなのがわかっていないので、悩んでいるような気がします。 つまり、 非同次方程式の一般解=同次方程式の一般解+同次方程式の特殊解とおくことはできないのかと。 質問の意味あまりわからないかもしれませんが、すいません。 わからなすぎて、なにが分からないのかもわからない状態で。 丁寧に解説してくれるとありがたいです。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 微分方程式について 2階線形同次微分方程式を解く場合、方程式が2実数解、重解、2虚数解のどれを持つかによって、一般解は異なります。 しかし、微分方程式をラプラス変換で解けば、一般解を求めるための公式は気にしなくともよいのでしょうか。 2階非同次微分方程式の問題 2階線形非同次微分方程式 y"-9y=3x^(3) 基本解y1=e^(3x),y2=e^(-3x) 基本解の定数係数の線形結合を u1(x)=a11*y1(x)+a12*y2(x) u2(x)=a21*y1(x)+a22*y2(x) とするとき、u1(x),u2(x)が2階定数係数同次微分方程式y"-9y=0の基本解となる条件を述べ、理由を説明せよ。 という問題があり、どこから手をつけたら良いかわからない状況です。どなたか教えて頂けたらと思い、質問しました。宜しくお願いします。 2階非同次線形方程式 次の2階線形の微分方程式の特殊解が答えと一致しないので分かる方、教えて下さい。 y''-2y'+y=(e^x)/(√(1-x^2)) 同次方程式として y''-2y'+y=0を解き、λ^2-2λ+1=0からλ=1の重根を出し、ロンスキアンを使う。そして定数変化法により、特殊解を求めたいと思っていますが、ならないのでお願いします。 答えは y=(c1+c2x+√(1-x^2)+xarcsinx)e^x になっている。 1階非同次微分方程式の一般解について 1階非同次微分方程式の一般解の解釈について不明点がございます。 一般化した1階非同次微分方程式:y' + p(x)y = q(x)の一般解は y = e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx + ce^(-∫p(x)dx) で表されるのは理解できるのですが、この一般解が非同次微分方程式の特殊解と同次微分方程式の一般解の和になっていることが理解できません。 つまり右辺の1項目、e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx が非同次方程式の特殊解になる理由がわかりません。 個人的に考えるに右辺の2項目のcが-∞~∞まで全ての値をとることが可能なので c=0の場合に、右辺の1項目は非同次方程式の特殊解になる、と勝手に推測しているのですがその考えでよろしいでしょうか? どなたかその辺詳しい方がいらっしゃいましたら是非ご教授お願い致します。 2階線形同次微分方程式について。 2階線形同次微分方程式について。 解が複素解の場合の質問です。 複素解λ1,2をもつ時、一般解は、Z(X)=C10e^λ1x+C20e^λ2x となり、これを整理すると、 y(X)=e^(-ax/2)[C1cos(√(―a^2+4b)x/2)+C2sin(√(―a^2+4b)x/2)] となるとのことです。そこで、教科書にC1=C10+C20の実数部分 C2=iC10-iC20の実数部分 と書いてあります。 この実数部分とはどういうことなのですか? なぜ実数部分なのですか? よくわかりません。 どうぞよろしくお願いいたします。 どうぞよろしくお願いいたします。 2階線形微分方程式は縮退は2まで? 数学カテゴリで質問すべきか迷ったんですが、ここで質問させてください。一次元シュレーディンガー方程式などの2階線形常微分方程式では解の縮退は最大で2である、とあるんですがなぜでしょうか? 2階線形常微分方程式は二つの独立解の線形結合で表せるから、などと聞きましたが、どうも理解できません…よろしくお願いします! (補足質問:2階線形常微分方程式は二つの独立解の線形結合で表せる、というのは積分定数が2つ出るから、と記憶してます。ということは、2階線形常微分方程式の解は常に二つの基底で展開できるということですよね?) 定数係数の同次一階線形偏微分方程式のサイト 宜しくお願い致します。 定数係数の同次一階線形偏微分方程式の解き方の載っているサイトをご存知の方いらっしゃいましたらお教え下さい。 2階線形同次微分方程式 以下の問題の解き方が理解できません。 途中の計算なども詳しく教えて頂けると幸いです。 (1) 2階線形同次微分方程式の関数と,二つの関数y1とy2および初期条件の対が与えられている.最初に二つの関数y1とy2が微分方程式の解であることを確認せよ.次に,初期条件を満たす特殊解を求めよ. (1) y''-y=0; y1=e^x, y2=e^-x; y(0)=0, y'(0)=5 (2) y''+4y=0; y1=cos2x, y=sin2x; y(0) = 3, y'(0)=8 (3) y''-3y'+2y=0; y1=e^x, y2=e^2x; y(0)=1, y'(0)=0 微分方程式 dx/dt=a^2-x^2 (aは実数の定数) (1)この微分方程式は1階の線形同次・線形非同次・非線形のどれにあてはまるか。 (2)この微分方程式の一般解を変数分離法で求めよ。 考えたことは(1)は非線形だと思いますが、合っていますか? (2)はdx/(x^2-a^2)=-dtと変形し、両辺積分します。 すると、1/(2a)log(|x-a|/|x+a|) = -t + C このあとx=が分からないです。 教えてください。お願いします 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分方程式 第1問 dy y~2-x~2 --=--------- (ヒントz=y/xと置換しなさい) dx 2xy 第2問 一階線形微分方程式 dy --+ycosx=sinx×cosx---(1)がある dx 1、この方程式の同次の微分方程式を解きなさい 2、定数変化法により、この微分方程式(1)の特解を求めなさい。 また、その時の一般解を求めなさい 二階同次微分方程式が存在しないことの証明 二階同次微分方程式 y''+p(x)y'+q(x)y=0 に関して次の設問に答えなさい。 (1)y=y1、y=y2を解としてもつとき、ロンスキアンの定義を示しなさい。 (2)x^3と|x^3|を共に解としてもつ二階同次微分方程式は存在しないことを証明しなさい。 とある教科書の例題です。 (1)の方はロンスキアンの定義の説明だから対処できますが、 (2)の方は、絶対値が絡んでいることもあり、 私の現在の理解では、十分な証明をすることができません。 よろしければ、お答えいただきたいと存じます。 1階線形微分方程式 y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題なのですが1階線形になることは示せたのですが、その次の1階線形微分方程式の解法がよく分かりません。 教えてください。よろしくお願いします。 ↓ y'-2y/x=xy^3 y'/y^3-2/xy^2=x u=1/y^2とおく ∴u'=-2y'/y^3 これを上式に代入すると -u'/2-2u/x=x ⇔u'+4u/x=-2x 一階線形非同次微分方程式について(積分ができない) 表題についてy'+y=cosxを一階線形非同次微分方程式として解きたいのですが、公式に当てはめるとy=e^(-y)(∫e^(y)cosxdx+c) となり、積分を展開しようと部分積分をしてもsin→cosとずっとループしてしまいます。この場合どのように計算すればいいのでしょうか。 よろしくお願いいたします。 同次形の微分方程式 おそらく同次形の一階の微分方程式の問題で xy' = y + √(x^2-y^2) というもんだいをといてみました(勝手に同次形で・・・w) 最終的に arcsin(y/x) = log|x| + C (C;a.c) とまでいったので±e^(-C)=αとして x = α exp(arcsin(y/x)) にしたんですけども解答では y + √(y^2 + x^2) = βx^2 という形になっているのですが、どうしたらこんな形の一般解を 導くことができるのでしょうか。 アドバイスお願いします! 常微分方程式の問題 常微分方程式の問題でいくつか解けなかったところがあるので教えていただきたいです。 この章で扱っているのは 変数分離系・同時系・線形1階微分方程式・完全微分形・線形2階微分方程式(同次形)・線形2階微分方程式(非同次形) を扱っていました。 その内、一般解を求める以下の問題 (1)dy/dx=xe^-y (2)x(dy/dx)-y=1 (3)(2y-x^2)dx+(2x-y^2)dy=0 と 与えられた条件をそれぞれ満たす微分方程式の解を求める以下の問題 (1)dy/dx=y/x (x=1のときY-2) (5)y''+5y'+6y=0 (x=0のときy=0、y'=1) の問題が解くことができませんでした。 どなたか解法をわかりやすく教えていただけないでしょうか? 未定係数法は一階の線形微分方程式にも使えるのでしょうか? 未定係数法は一階の線形微分方程式にも使えるのでしょうか? 一階の線形微分方程式の解き方は dy/dt + p(t)y = g(t) のとき e^∫p(t)dt を両辺にかけて そのあとで両辺を積分してyについて解く と習いました。 そして、未定係数法は2階の線形微分方程式を解く方法の一つとして、 習いました。 ここで疑問に思ったのが、 この未定係数法は一階の線形微分方程式にも使えるのでしょうか? だとしたら下のような手順でよいのでしょうか? 同次式: dy/dt + p(t)y = 0 の一般解を求める (積分定数が残る) 非同次式: dy/dt + p(t)y = g(t) の特殊解を求める (積分定数はない) yの一般解 = 同次式の一般解 + 特殊解 よろしくお願いします。 2階非同次微分方程式 物理学の講義でレポート課題を出されたのですが 学籍番号によって問題が異なるため 友達と解答を照らし合わせることができません。 一応、答えは出せたのですが いまいち納得がいかないので この場所を借りて質問させていただきます。 x = x(t) x'' + 2x' = 1 … ※ の一般解を求める問題です。 同次方程式の一般解は A,B を定数として x = A + B*exp(-2t) と出ました。 ※の特殊解の1つ x = t/2 を見つけたので そこから※の一般解は x = A + B*exp(-2t) + t/2 と出せたのですが 上の2つ(同次方程式の一般解と非同次方程式の特殊解)は 解答としてあっているのでしょうか? また、自分では解いたというより 無理やり見つけ出したという感覚なので ※の特殊解の導き方を教えていただきたいです。 解答よろしくお願いします。 (2日後に提出なので困り度を最高にさせていただきました。) 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
nktnystk様、こんにちは! 早速の回答ありがとうございます。 よく勉強したいと思います!