- ベストアンサー
方程式の問題、同一性の保持とは
こんばんは、よろしくお願いします。 xに関する2つの方程式が少なくとも1つ共通解を持つ為の条件を求め、その共通解を求めよ。 x^2+px+2p+2=0・・・1 x^2-x-p^2-p=0・・・2 方針:連立方程式を解き、次数を下げる。 方針どおりに 1-2 の連立方程式を解きまして、 (p+1)x+p^2+3p+2=0 (p+1)(x+p+2)=0・・・3 ア、p=-1でないとき、(すいません。記号の出し方が分りません) x=-(p+2)これを2に代入して、 (p+2)^2+(p+2)-p^2-p=0 4p+6=0 p=-3/2となり、x=-1/2 イ、p=-1のとき、 1も2も x^2-x=0となりx=0,1ですね。 と、ここまで自分なりに考えまして、解説を見たのですが、 答えの値としては合っている様なのですが、 "ア(p=-1でないとき)の部分でx=-(p+2)を2に代入していることによって同値性を保持していることに注意してもらいたい。” とあるのですが、わからないです。 ただなんとなく連立方程式を解いて、代入して答えが出てしまいました。 同値性を保つということはどういうことなのでしょうか? また、(p=-1でないとき)の部分でx=-(p+2)を2に代入することによってなぜそれができるのでしょうか? 同値という用語は数学A習ったので分ります。⇔という記号を使う必要十分条件ですよね。 長々と書いて申し訳有りませんがよろしくお願いします。
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (2)
noname#47975
回答No.3
noname#101087
回答No.1
お礼
ご回答ありがとうございました!!!