- 締切済み
乗法・除法優先
初歩的な質問ですが、よろしくお願いします。 乗法・除法優先の法則というのがありますよね? ひとつの式の中に、足算と掛算があったら、掛算からする…というあれです。 ex ) 2+3×4=5×4=20 ではなく 2+3×4=2+12=14 になると。。。 しかし、なぜ乗法・除法が優先されるのでしょう? 2+3×4=2+(3+3+3+3) だから、与式=14 になる。。。と言う人もいますが、 乗法・除法が優先される理由として成り立たないと思うのですが… どうか、わかりやすい説明をお願いします。
- みんなの回答 (6)
- 専門家の回答
みんなの回答
- kabaokaba
- ベストアンサー率51% (724/1416)
ぶっちゃけた話,No.1さん,No.5さんと同じですが 「表記のお約束」 にすぎません. 「2+3*4 は 2 に 3*4 を足したものを表す」 という書き方のお約束に過ぎません. じゃあ,違うお約束があるのかとなりますが, 実際にあります. 2+3*4のことを + 2 * 3 4 と書く記法もありますし (ポーランド記法,コンピュータ言語だと Lisp なんかはこれに近い) 2 3 4 * + と表記する記法もあります (逆ポーランド記法,コンピュータ言語だと PostScriptがまさにこれ). 100円玉5枚と10円球3枚で何円といった場合,これは 100*5 と 10*3 の和を意味するのは納得できると思いますが, 英語の語順だと 100*5 + 10*3 なんで 乗法を優先させる書く方が自然なだけです. 日本語だと 「100に5を掛けたもの と 10に3を掛けたもの を 足す」 なので 100 5 * 100 3 * + となるわけです(逆ポーランド記法). 繰り返しますが「単なる表記のお約束」に過ぎません. が,方程式とか考える上では便利な記法ですし 括弧を使うことで演算の順序を明示できるのも便利です.
- Ishiwara
- ベストアンサー率24% (462/1914)
#1さんと同じです。 約束ごとにすぎません。 ある程度数学が身についてから「もしこの約束ごとが、逆だったらどうだろう」と考えてみてください。そのとき疑問は氷解しますよ。
お礼
ご回答ありがとうございます。 約束事は約束事なんですね。。。 いかんせん、頭が文系なもので。。。 この問題は、頭の中で凍らせたままにしときます。
- neKo_deux
- ベストアンサー率44% (5541/12319)
何かと何かを乗除算して、最後に加算する。 という形の計算は、自然な対象物を扱う色んな計算の中で頻繁に出てきます。 逆に最後に3つ以上の値を掛け合わせるのは稀です。 (消費税とかも、その後総和を取る事が多いですし。) 優先の法則が無い場合、 2+(3×4) と書かなければならないのですが、 1円玉8枚、5円玉3枚…の金額= (1×8)+(5×3)+(10×7)+(50×3)+(100×4) なんて式を書くのも面倒だって事で、 1×8+5×3+10×7+50×3+100×4 と、カッコは省略してもいいってルールにしたと考えると合理的です。 つまり「足算と掛算があったら、掛算からする」でなくて、「単項同士の乗除算にかかるカッコは省略してもいい」って考えては?
お礼
ご回答ありがとうございます。 考え方として、 2+3×4=2×1+3×4 の、×1が省略されている…ってことなんでしょうか。 頭が悪くてすいません。
- ryn
- ベストアンサー率42% (156/364)
ある数を次の数へ移すという操作を複数回繰り返すことで和が定義され, 足し算という演算を複数回繰り返すことで積が定義され, 掛け算と言う演算を複数回繰り返すことで冪が定義される, というあたりからきています.
お礼
ご回答ありがとうございます。 冪ですか?はじめて聞きました。 理解するのに時間がかかりそうです。
- leap_day
- ベストアンサー率60% (338/561)
○+□*2 と (○+□)*2 図で表すと ○□□ と (○□)(○□) ですよね? 例えば500円玉1個と100円玉2個足していくら? 500+100*2 ですよね? 当然答えは700円です これを1200円と答える人はいないでしょう?
お礼
ご回答ありがとうございます。 なるほど、単位がつくとわかりやすいような気も…
- fujimaru00
- ベストアンサー率21% (51/235)
理由というか、決まりなの!
お礼
ごもっともです。 ただ、なぜそういう決まりになるのかを知りたいのです。
お礼
ご回答ありがとうございます。 お約束を、純粋に「お約束だから」と納得できる、 素直な頭を身につけたいと思います。