パラメータ関数の増減表
C:x=e^t-e^(-t),y=e^3t+e^(-3t)
このとき、xの関数yの増減と凹凸を調べ、曲線Cの概形を描け。
という問題なんですが、dx/dtやdy/dt,d^2y/dt^2などを調べていくと思います。これは問題文に調べよとありますから計算したこととしますが、グラフを描くときに増減表を書くと思います。ここでですが、この場合xやyの導関数は実際調べなくとも明らかに正ですよね?ですから増減表を書くときに
t|0 … ∞
x|0 → ∞
y|2 ↑ ∞
というように書いてよいのでしょうか?(y軸対称ですからt≧0で考えています)ここでお聞きしたいのは増減表の中に導関数を取り入れていないことが許されるのかということです。そもそも増減表はx,yの動向をつかむためのものであるから、別に導関数をかかなくてもよいと思うのですが。これは予備校の先生に教わったので間違いではないと思うのですが、果たして採点官に認められるのかと思いまして。例えばx=sin3t,y=cos2t(0≦t≦π/2)というようなパラメータ関数があったとして「このグラフの概形を描け」とだけ問題にあったとしたら、dx/dtなど調べなくても実際にtx平面にx=sin3tのグラフを描けば、どこで増加・減少になるかは一目でわかります。
t|0 … π/6 … π/3 … π/2
x|0 ↑ 1 ↓ 0 ↓ -1
(ちょっと上の増減表ずれてるかもしれませんが、…の下に矢印があると判断してください)という感じです。もし許されるのであれば、このように判断できるものは無駄に導関数など調べなくてもよいということになりますし、かなり手間が省けると思います。
以上のことについてアドバイスお願いいたします。