締切済み 積分、グラフです。 2021/08/24 19:57 関数y=√(x^2+1)/x^2-3xの増減、極値を調べ、そのグラフの概形をかけ。ただし、グラフの凹凸、変曲点は調べなくて良い。 が分かりかねます。 どなたか分かりやすい説明していただけませんでしょうか? みんなの回答 (2) 専門家の回答 みんなの回答 CygnusX1 ベストアンサー率68% (66/97) 2021/08/25 10:14 回答No.2 まず確認、- 3 x は分母ではないですよね。 グラフの概形を描け、ということなので、適当に x を代入して、グラフを描けばいいのでは。 注意点としては、 x = 0 で無限大、 x が 0 から離れると y = - 3 x の直線に漸近する ということ。 x = -1 から - 0.5 は細かく描いた方がいいです。0.5 〜 1 は細かくなくても OK。 質問者 補足 2021/08/25 15:51 -3xも分母です! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 f272 ベストアンサー率46% (8651/18505) 2021/08/24 20:03 回答No.1 与えられた関数を微分して,その導関数の符号を調べてください。 導関数の値が正のときは元の関数は増加,導関数の値が負のときは元の関数は減少しています。極大値は増加から減少に変わるときで,極小値は減少から増加に変わるときです。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 積分です y=√(x^2+1)/x^2-3x の増減、極値を調べ、そのグラフの概形をかけ。 ただし凹凸、変曲点は調べなくて良い。 3xは分母の中に入ってます。 塾の小テストに出て、よく分からなかったので、 どなたか分かりやすい説明よろしくお願いいたします。 グラフを書くとき グラフを書くときに少し疑問があります。 例えばy=x^4-3x^2+1の増減を調べ、極値、変曲点を求めグラフを書け。 という問題のとき漸近線については特に求めなくてよいのでしょうか? また、y=x^4-3x^2+1の増減を調べ極値、変曲点を求めよ。またグラフの概形を書け。 といときグラフを書け、とグラフの概形を書けとでは何が違うのでしょうか? よろしくお願いします。 微分積分の問題です 微分積分です。途中式を含め教えて下さい。 (1)次の関数の第二次導関数を求めよ。またx=0における第二次微分係数を求めよ y=(1+x)log(1+x) (2)次の関数増減・極値、そのグラフの凹凸・変曲点などを調べ、グラフの概形を描け y=2(x-1)^ex (2)は文章で伝えるのは難しいかもしれません。なのでyの微分だけでも教えてください。 よろしくおねがいします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 関数の極値 増減 y=x^2*e^(-2x^3)/3の増減を調べ極値とグラフの概形を描く問題で、 極値は微分して0となる点を求めて増減表から求められましたが概形を描くにはどうすれば良いのでしょうか? 二回微分して凹凸を求めようとしましたが0となる点がわからず困っています。 増減表から描こうと思えば描けますが凹凸を一階の増減表から描いても問題ないのでしょうか? sinの微分についてです。 関数y=x-2sinx(0≦x≦2π)の増減、極値、グラフの凹凸および変曲点を調べて、そのグラフをかけ。 という問題です。 二回微分するのはわかりますが、y'=0となる値の求め方がわかりません。 何かコツとかぎあれば教えてください。 お願いします。 数学 微分の問題です (1)関数y=(x-1)e^xの増減、極値、グラフの凹凸および変曲点を調べよ。ただし、lim(x-1)e^x=0、x→-∞を使って良い (2)関数y=-e^xのグラフ上の点(a、-e^a)における接線が点(0、b)を通るとき、a、bの関係式を求めよ。 (3)点(0、b)を通る、関数y=-e^xのグラフの接線の本数を調べよ。 解答お願いします。 微分の問題でグラフの概形を書けという問題がありますが 微分の問題でグラフの概形を書けという問題がありますが 問題によって変曲点まで求めているものと求めていないものがあるのですが グラフの概形を書けといわれた場合 変曲点まで求める必要はあるのでしょうか? 凹凸を調べろとまで言われていたら変曲点まで求めなければいけない ということはわかりますが概形を書けとだけあった場合に どこまで求めればいいのかわからないので教えてください。 4次関数の変曲点の求め方について 4次関数の変曲点の求め方について 「次の曲線の凹凸を調べ、その変曲点を求めよ y = x^4-4x^3+6x^2 」 という4次関数の2回微分の練習問題なのですが、解けません・・・ 増減表を書くために、まず1回微分で極値を求めたのですが、解の方式を使った結果、xの値がかなりややこしい値になってしまって増減表もろくに書けません。泣 あきらめて、次に2回微分をおこなってxを求めた結果、x=1(2重解)。 ということは変曲点は(1,3)ということだと思って、回答を見たら 「全区間で下に凸,変曲点なし」 とのこと。 全く意味が分かりません。 そして曲線の凹凸を求めるために、自分はいちいち増減表を書かないと求められないんですけど、他に方法はあるのでしょうか。 少しのアドバイスでも良いので回答してくだされば助かります。 よろしくお願いします。 グラフの概形をしめす?? y=x^3+xのグラフの概形を示せと言う問題の解説に「y’=3x^2+1より、全ての実数xに対してy'>0である。したがってこの関数は増加関数であるがy'=0となることがない。また、この関数のグラフは原点に関して対称である。関数の増減だけからこのグラフの形の細かい点について知ることはできないがx=0のときy'=1であることからグラフが原点で直線y=xに接していることがわかる。」とあったのですが、なぜいきなり「この関数のグラフも原点に関して対称である」ということができるのでしょうか?グラフが原点に関して対象ではなく、値は分からないけどx≠0ではないどこかのxの値に関して対称でグラフが原点で直線y=xに接しているということもありえるのではないか?と思えてしまいます・・ お願いします!教えてください! 関数の増減と極値 y=(x^2-5)√x の増減、極値を調べてグラフの概形を書くのですが、 √xにマイナスを代入した場合がわかりません^。^; 全体的に詳しく説明して頂きたいですm(__)m 増減表について f(x) = e^-x・cosx (0<=x<=2π)の増減、極値、グラフの凹凸、変曲点を調べ、 増減表を書きグラフの概略を示せ という問題についてなのですが、 y' = (-√2)e^-x・cos(x-π/4) y''= 2e^-x・cos(x-π/2) (※2つともcosで合成してます。) としてy'=y''=0とおき、e^-xの項は正の値しかとらないので消去 それぞれy'は3/4π,7/4π、y''については0,π,2πと出たのは良いのですが、 この通りに増減表を書くとおかしなグラフになってしまいました。 f(x)を見る限りでは結果的にcosxを減衰したようなグラフの形になるはずですよね…? 何処がおかしいのか教えていただけないでしょうか? よろしくお願いします。 高校数学 関数 f(x)=√x+x2 (←二乗です)について (1)定義域 (2)対称性,周期性 (3)第一次導関数f´(x) (4)第二次導関数f´´(x) (5)増減,凹凸,極値,変曲点 (6)漸近線 を教えてください 多くてすみません。 できるだけ詳しくおしえてください 早めの解答よろしくお願いします<(_ _)> 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム どうしてもわかりません 以前、同じ質問をし、回答をもらったのですが、理解できないところがありました。補足質問をしましたが返事は来ず、丁寧に教えていただきたかったので、また書かせていただきました。 関数f(x)=(x^2)logx(x>0)を考える。 (1)y=f(x)の増減と凹凸を調べ、グラフをかけ。lim(x→+0)x^2logx=0を用いてよい。 この場合の増減表の書き方なんですが、2次導関数まで調べて、変曲点を出すことができました。グラフをかくにあたって、できるだけ細かい範囲で求めたほうがわかりやすいと思うのですが、増減表の範囲は、どこからどこまで書けばいいのでしょうか? また、増減や値がはっきりとわからない時は、空欄にしてもいいのでしょうか? lim(x→+0)x^2logx=0より、0は定義されないのはわかるんですが、グラフをかくときに、どのように説明すればいいのでしょうか? 増減表のかきかたを、わかりやすく教えて下さい。お願いします! 次の関数の増減を調べ、極値を求めよ。また、そのグラフをかけ。 次の関数の増減を調べ、極値を求めよ。また、そのグラフをかけ。 の問題でy=-x^3-2xで、解き方が分からないので教えて下さい。 関数f(x)=xe^1/xについて 次の問題の解答を教えて下さる方いらっしゃいましたらよろしくお願いいたします。 関数f(x)=xe^1/xについて、 1. その領域と漸近線を求めよ。(関数がx=0の右と左で異なることを記すこと) 2. この関数に相対的な増減の幅、また極値を求めよ。 3. この関数の凹凸を調べ、その変曲点を求めよ。 4. これら3点の事項を考慮してグラフを書け。 5. ある関数gの微分係数がつねに正確に増加しており、g'(0)=0である。 x=0の点において関数gはどのような状態であると言えるか。 グラフの書き方(数学3・C) 関数f(x)=2x^2/2x^2+3x-2 の (1)定義域を求め、 (2)x→+∞のときのf(x)を求め、 (3)x→-∞のときのf(x)を求め、 (4)f(x)の増減および極値を求め、 (5)グラフの概形を書け。 この問題で困っています。 (1)~(4)まで普通に解けたのですが、 (5)の際に-2と1/2付近のグラフのふるまいが分かりません。 (増減表からなんとなく∞や-∞に行きそうということは分かるのですが・・・) 答えではx→-2±0のときf(x)=-+∞ (-+はマイナスプラスです) x→1/2±0のときf(x)=±∞とだけ書いてあるのですが、 どのように導いたのかがわかりません。 よろしくお願いします。 お願いします。 お願いします。 関数y=tanx (-π/2<x<π/2)の導関数及び第2次導関数を求めよ。 次に、グラフの凹凸と変曲点を調べよ。 極値の問題です 途中式もお願いします 関数f(x)=log(sinx+2) (0<x<2π)について、次の問いに答えよ (1) f(x)の第一次導関数f'(x)と第二次導関数f''(x)を求めよ (2) f(x)の極値を求めよ (3) f(x)の変曲点を求め、y=f(x)のグラフの概形を座標平面上にかけ (4) kを実数の定数とするとき、0<x<2πにおけるlog(sinx+2)-kの解の個数を調べよ 大学入試(数学3) 高校3年です。 今度の日曜日に大学入試があるのですが、グラフの書き方について質問があります。 具体的には、 f(x)=(logx)^2/x (x>0)において、y=f(x)のグラフをCとする。 (1)関数f(x)の増減を調べ、曲線Cの概形をかけ。 という問題なのですが、微分してグラフを書けば良い話なのですが、二回微分して凹凸まで調べる必要はありますか? 解答には「ここでは増減のみで、凹凸までは求められていない。したがって、f'(x)のみで曲線Cの概形を描けば良い。」 となっているのですが、実際のところ、一回微分しただけではどこが凹でどこが凸か分かりませんよね?複雑な関数ならなお更です。 解答では第一次導関数までしか出してないのに凹凸までちゃんと描かれているのが謎です。 自分で解いてみたところ大体の形は合っていたのですが、やはり凹凸が微妙に間違っていました。 本番だと減点対象ですよね? しかし2回微分するには時間的にも計算力的にも心配です。 「グラフの概形を描け」という問題は、二回微分するべきなのでしょうか? それとも一次導関数まで出して大まかに描くべきなのでしょうか? 今は学校がなくて聞ける人がいないので・・・よろしくお願いします。 グラフの概形について x=f(t) , y=g(t) (tはパラメータ)で表される関数のグラフの概形を書く手順を教えてください。 特に1:増減表の形 2:漸近線の求め方と漸近線を求める位置 をお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
補足
-3xも分母です!