ベストアンサー ユークリッドの「原論」命題5について 2006/08/08 12:40 命題5というのは「二等辺三角形の2つの底角は等しい」というものなのですが、これをユークリッドがどのように証明したのか、詳しく説明しなければなりません。知っている方、教えてください!! みんなの回答 (4) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Willyt ベストアンサー率25% (2858/11131) 2006/08/08 14:24 回答No.3 久しぶりに紙と鉛筆を取って見ました(^_^;) 頂点Aから底辺に向かって垂線を下ろし、その足をHとすると、 △ABHと△ACHはAH共通、AB=ACで二辺と一角(直角) が等しいので底角が等しいことなりますね。合同条件で一角は夾角でなければなりませんが、一角が直角の場合は例外なのですよね? 質問者 お礼 2006/08/08 14:32 回答ありがとうございます!とても助かります! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (3) chiropy ベストアンサー率31% (77/244) 2006/08/08 16:23 回答No.4 ■題意 △ABCにおいてAB=AC⇒∠B=∠C ■証明 △A'B'C'を次のような条件を満たすものとする。 A'B'=AC, A'C'=AB, ∠A'=∠A したがって △A'B'C'≡△ACB となり ∠B'=∠C,∠C'=∠B である。(直感的に言えば△A'B'C'は△ABCを裏返した三角形であると考えられる) 次に△ABCと△A'B'C'において AB=A'B'(∵A'B'=AC=AB) AC=A'C'(∵A'C'=AB=AC) ∠A=∠A' であるので△A'B'C'≡△ABC(∵二辺夾角相当) ∴∠B=∠B'(=∠C)、∠C=∠C'(=∠B) つまり∠B=∠C Q.E.D. 確かこんな感じだったはずです。私も中一の時にユークリッド幾何を習ったので確かではありませんが。(ちなみに今高3です) 確か二辺夾角か二角夾辺のどちらか一方を基礎事実とすれば、もう一方は示されますが、三辺相当で合同であることを示すにはこの底角定理を経由しなければならないんですよね。 どうでもいいこと書いてスイマセンでした。 質問者 お礼 2006/08/08 20:46 とても参考になります! こんな質問に答えてくれてありがとうございます! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 noname#38655 2006/08/08 13:22 回答No.2 確か、三角形ABCのACとABをそれぞれ延長し、BD=CEとなるようにDとEをとる。 すると三角形ABEと三角形ACDが合同。 また三角形BDCと三角形CEBが合同。 この二つを使って、ユークリッドによる証明ができるはずですよ。 質問者 お礼 2006/08/08 14:35 回答ありがとうございます! 自分でも良く考えてレポートを書いてみます! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 yanasawa ベストアンサー率20% (46/220) 2006/08/08 13:20 回答No.1 原論は書店にあります。見た方が手っ取り早いと思いますが・・・。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 不完全性定理 ユークリッド幾何学 公理 専門家の方にお聞きしたいのですが、不完全性定理でいう「自然数論を含む帰納的に記述できる公理系が、ω無矛盾であれば、証明も反証もできない命題が存在する。」において、 ユークリッド幾何学における証明も反証もできない命題=ユークリッド幾何学の5つの公理 ということでよろしいでしょうか?? また、ユークリッド幾何学の5つの公理以外には、ユークリッド幾何学において証明も反証もできない命題は存在しないと考えていましたが、正しいでしょうか? 命題について いま、「数学は言葉」という本を読んでいます。 p38からp39にかけて、 「証明できないような図形の命題をあげよ」という例題があります。 「xは三角形である。」 「xに代入する値によって、この命題の真偽は変化するのです。このような命題は証明することができません。」 とあるのですが、真偽が変化するのにどうして命題といえるのか。真偽が判定できるから命題というのではないのでしょうか。もちろん、証明できないから命題ではないと言えないのは分かりますが。例えば、三平方の定理とか。 さらにp39のところで、 「三角形の2辺の長さの和は残る1辺の長さよりも短い」も図形の命題ですが、偽なる命題です。偽なる命題が証明されてしまっては困ります。 以上のことから、「自由な変数が含まれているため、真偽が定まらない命題」や「偽なる命題」は(枠組み自体が歪んでいない限り)証明できないことがわかります。 とあります。 「三角形の2辺の長さの和は残る1辺の長さよりも短い」は偽なのは分かりますが、証明できるものなのかどうかよく考えてみると少なくとも私には証明できません。ということはこれは「証明できない命題」なのでしょうか。もし証明できないとすれば例題の証明できない図形の命題ということになるのですが。さらに「偽なる命題が証明されてしまっては困ります。」とはどういう意味で書かれているのでしょうか。ピンとこないのです。 けっこう難しいと思うのですがわかりやすく説明できる方はいませんでしょうか。 宜しくお願いします。 ユークリッド幾何学にまつわる不完全性定理的理解について ユークリッド幾何学にまつわる不完全性定理的理解について ゲーデルの不完全性定理の対象となる数学は『公理系Nが無矛盾である』が前提です。ユークリッド幾何学は 一階述語論理で表されることが出来る自然数の部分集合であって、ゲーデルの不完全性定理の対象である 公理Nの無矛盾である 論理の対象になってないとなり それ以上のユークリッド幾何学の論理的理解が進みません。そこでゲーデル理解を拡張して『公理系Nが無矛盾ではない』として不完全性定理を理解すると(須田隆良氏、中西章氏など) (1)ゲーデルの第一不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが 公理系Nにおいて、「公理系Nにおいて命題は証明可能である。」という命題も、「公理系Nにおいて命題は証明不可能である。」という命題も証明不可能である (2)第2不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが その無矛盾性を証明できない となります。これらはゲーデル不完全性対象から外れておりますが、対象外のユークリッド幾何学を理解するには都合がよい と思うのです。 (2)によりユークリッド幾何学の公理の無矛盾性は証明できない。 (1)によりユークリッド幾何学の未定義領域(非ユークリッド幾何学、虚数、無限遠点とか)は 公理系Nにふくまれ 多くの証明できない命題があることになります。もちろん 公理定義内では完全性理論は保証されています。 なぜ このようなユークリッド幾何学に こだわる かと申しますと 世の中の 論理(数学、哲学、論理を用いた論文 など)は ユークリッド幾何学的なものが 圧倒的に多いと思うのです。これら論文は ほとんどは一階述語理論で表され かつ ゲーデル不完全性定理 対象論理ではないのです。それら論文の特に(2)に関わる自己証明は出来ない ということは重要であると思うのです。もちろん 自己証明が出来ないと言って間違いとはなりません が 常に 冷静に謙虚に 主張理論の原点を見直すことに 繋がっていると思うのです。勿論、論理構成が出来ていないシロモノは 論外であります。 以上のように理解しているのですが、ユークリッド幾何学にまつわるゲーデル不完全性定理の場外理解は問題ないでしょうか。諸先生のコメント頂けましたら幸甚です。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 原論3巻命題35について 間接的な質問(畑違い)からになって恐縮なのですが、よろしくお願いいたします。 スピノザの「エチカ」第二部定理八備考の中で、ユークリッド「原論」3ー35を用いた解説があります。 ”円は、その中でたがいに交わるすべての直線の線分から成る矩形が相互に等しいような本性を有する。” 上記説明について、この画像が添えられているのですが、 http://nam21.sakura.ne.jp/spinoza/p2p8fig.gif 参照元となっているユークリッドの原論の箇所、 http://euc-elements.matrix.jp/03/E-Elements0335.html を読んでみても、数学的素養が全くないため、「矩形」または「2つの部分にかこまれた矩形」というのが、どのような図になるのか、見当がつきません。 ちなみに、図書館で書籍に当たってみたのですが、「矩形」が図示されておらず、わかりませんでした。 http://www.amazon.co.jp/ユークリッド原論-追補版-中村-幸四郎/dp/4320019652/ref=sr_1_2?s=books&ie=UTF8&qid=1359453169&sr=1-2 どなたか、素人にも上記の意味における「矩形」とはどのようなイメージ(図)なのか、教えていただけませんでしょうか。 ユークリッドの互除法がわからない ユークリッドの互除法は、どうして割っていくと公約数が求められるのですか? 公約数を求めるやり方はわかったのですが、どうしてそうなるのかわかりません。 調べて説明や証明を読んでもチンプンカンプンでした。 わかりやすく教えていただけたら嬉しいです。 よろしくお願いします。 ユークリッド幾何学において 真偽が証明できない問題として 例えば『無限 ユークリッド幾何学において 真偽が証明できない問題として 例えば『無限遠点で平行線は交わる』は その例と考えますが、合っているでしょうか。なぜなら 無限領域は 定義されていないからです。 ユークリッド幾何学の5公理は有限領域で定義されているとし、その場合に真偽が証明できない問題として 例えば『X・X=-1は根が存在しない』はその例と考えますが、合っているでしょうか。なぜなら 複素数領域は定義されていないからです。 なお 公理は証明対象にならない 命題と考えます。 命題 命題「私はニートである」 これをどうやって証明するのでしょうか? 定義と定理の違い 定義と定理の違いがわかりません。 学校の図形の授業で定理は「証明しなくてはいけなくて、それに当てはまっていても必ずしもその図形ではない。図形の性質を述べたもの」と習いました。 定義は、定まっていて、その図形の必要条件、その図形の約束事」と習いました。 ・・・・二等辺三角形を例にして: 二等辺三角形の定理→底角はそれぞれ等しい 頂角の二等分線は、底辺を垂直に二等分する 二等辺三角形の定義→二つの辺が等しい 二等辺三角形の「二つの辺が等しい」はわかります。これに当てはまっている三角形は必ず二等辺三角形ですよね。 でも、定理のほうに「底角はぞれぞれ等しい」と書いてありますが、それに当てはまっている三角形は必ず二等辺三角形ですよね?それに当てはまっていても二等辺三角形ではない三角形なんてないですよね?これは定義のはずなのに、なぜ定理にされているんですか?? もう意味わかりません。こうなると定義も定理も一緒じゃないんですか? 教えてください、お願いします。 二等辺三角形の底角の証明 大至急おねがいします。 二等辺三角形の底角は、かならず鋭角になる事を説明さい。 この問題を分かる方ご回答を願いします。 命題らしいのですが・・・ 友達からこんなクイズを出されました。 「成功例を分析することだけでは本当の成功の原因がわからない」 という命題の意味を説明せよって感じです。もしこんなような命題を聞いたことがあって答えを知っている方教えてください。 ユークリッドの互除法について 13を9で割ると 1.444…の循環小数で表せますが, このわり算の筆算ができる理由をユークリッドの互除法で説明したいと考えています。 ユークリッドの互除法について いくつかの文献を読みましたが どれも 最大公約数を求める方法として紹介されています。 筆算ができる理由としてユークリッドの互除法をどのように使えばよいか ご回答の程よろしくお願いします。 ユークリッド整域 整数Z上の多項式環Z[X]がユークリッド整域とならないことを証明したいのですが, どのようにすればいいのかわかりません。 どなたか解説お願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム この命題は証明できないについて ゲーデルの不完全性定理などの話の中で上がる、「この命題は証明できない」の矛盾について、どこが矛盾になるのかよくわかりません。 定義的な読み違いだと思うのですが、自己言及のパラドックス(床屋の〜とか嘘つきの〜)については納得というか理解ができます。 例えば嘘つきのパラドックスでは「私は嘘つきである」という発言が正なら嘘をついているので正直者ということに、偽なら正直者のはずが嘘つきと嘘をついている、と矛盾が生じます。それはわかります。 この命題は証明できない、の場合も同じように考えるのだということはわかるのですが、「この命題」をAと表記したときに、「Aが証明できない」が正であれば「Aは証明できない」ということを「証明できる」ということになります。 「Aが証明できない」を偽だとすると「Aは証明できる」ことになります。 ここまではよいのですが、これは数学的な話であり、正の「Aが証明できないことを(BやCなど別の定理を使って)証明する」ことは可能な気がしますし、偽の「Aは間違いである」と結論付けることにも問題がない気がします。 嘘つきのパラドックスとの差に、他の考え方(上記例で言うとBやCといった命題以外の定理)の持ち込みがあるので、これが読み違いというか悩みの原因だと思うのですが…。 持ち込みがなく、命題のみで行う場合(=自己言及のパラドックスに陥る場合)がゲーデルの不完全性定理に当てはまる場合であり、持ち込みがあり矛盾なく証明または反証ができる場合が解決可能な定義(または予想)という認識であってますか…?? 数学学んでるわけではなく、単純に目に触れて興味持っただけのド素人です。学校教育から離れて久しいですので、ものすごくわかりやすい説明や解説を求めております。。。 命題について 証明問題をやっていて、答えをみると対偶とか、背理法で証明をしているのですが 条件を否定する必要があります。それに関する質問です。 命題の仮定や結論が何になるのかがよくわかりません。 基本的なことになるのですが、よろしくお願いします。 (1)√2が無理数であることを証明せよ。 解答は背理法で証明していました。 ということは、結論を否定して矛盾を導くことになると思うのですが、 そこで仮定は何で、結論は何になるのか疑問に思いました。 仮定は、√2が実数。仮定は√2は無理数。とおもいましたが、 正しくはなにか。 (2)aとxは実数で、あるxに対して、a<xとなるaが存在することを証明せよ。 この命題の仮定と結論が何になるのか、よくわかりません。 結論が分からないので、否定も考えられません。よろしくお願いします。 命題の問題について 命題の問題です。 「CA=CBの二等辺三角形である」という条件をp, 「CBcosA=CAcosB」という条件をqとする。 このとき、 命題「pならばq」は【 ア 】 命題「qならばp」は【 イ 】 よって、q はpであるための【 ウ 】 この問題がわかりません。 自分は【ア】真である 【イ】偽である 《反例:CA=√6+√2, CB=√6-√2, cosA=(√6+√2)/4, cosB=(√6-√2)/4》 【ウ】必要条件であるが、十分条件ではない という解答にしました。 指摘・訂正お願いします。 命題関数の問題です 独学で命題関数を勉強しているのですが、なかなか理解できません。 次の問いの答えがわかる方がいらっしゃいましたら、よろしくお願いします。 Xを三角形の集合とし、命題pを“二等辺三角形である”とするとき、次の命題の真偽を定めよ。 (1)2つの内角の大きさが等しい△ABCについてp(△ABC)の真偽 (2)1つの頂点と対辺の中点を結ぶ線分が対辺に垂直になる△ABCについてp(△ABC)の真偽 (3)1つの内角が90°であるような△ABCについてp(△ABC)の真偽 3角不等式の証明。 3角不等式の証明。 3角形の2つの角が等しくないとき、大きい角に対する辺は小さい角に対する辺より大きいことの証明を授業形式で発表しなければなりません。 三角形において、2辺は等しい→底角は等しい、は示されているんですが、逆に底角は等しい→2辺が等しい2等辺三角形、はまだ証明していません。なので以前他で教えてもらった下の証明は使えない訳ですが、他にこの問題を証明で示す方法はないでしょうか。背理法以外でおねがいします。 【確認しておきたい定理】 (1) 「CA<AB ならば、∠B<∠C である」 (2) 「2辺の和は他の1辺より大きい」 (3) [2辺三角形において、2辺は等しい⇔底角は等しい」 ********************************** △ABC において、 ↓ 命題:「∠B<∠C ならば、CA<AB である」が真であることを 証明します。 ∠B<∠C だから辺AB上に点Dをとって、∠B=∠BCD とできる。 よって、△DBC は2辺三角形だから、DB=DC ∴ AB=AD+DB ......=AD+DC ・・・・・・(1) ここで、△ADC において「2辺の和は他の1辺より大きい」から .....AD+DC>CA・・・・・・(2) (1)(2)から ....CA<AB 対偶による命題 整数aについて、命題(a^2が3の倍数ならば、aは3の倍数である)が与えられている。 (1) 元の命題が真であることを証明する方法がわかりません。 これは、合同式をつかうそうなのですが、合同式についてよくわかりません。 誰か、お願いします 命題の証明 教科書の復習で、練習問題を解いてますが、解けない問題があるのでお願いします。 x,yは実数とする。対偶を考えて、次の命題を証明せよ。 x+y>0⇒「x>0またはy>0」 という問題で、 この命題の対偶は次の命題である。 x+y≦0⇒「x≦0かつy≦0」 と、ここまでは書いたのですが、ここからどうすればよいのか・・・。 図形の証明 ある図形を証明する時、 その図形の定義が成り立った場合はもちろん、 その図形であると言えますよね。 これは、定義でなく、定理であっても証明可能なのでしょうか? 具体的な例としては、 2辺が等しい三角形(定義)ならば二等辺三角形であるといえますが、 2角(底角)が等しい三角形(定理)は二等辺三角形といえるのでしょうか? ということです。 自分の頭の中では、 ある図形の定義が成り立てば、その図形が成り立ち、 その図形が成り立てば、定理が成り立つと言った具合なのですが・・・・ 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
回答ありがとうございます!とても助かります!