ベストアンサー 正四面体の重心を… 2005/02/03 21:09 次の問題がわかりません。教えてください。 正四面体のすべての重心を結んでできる図形の体積の元の正四面体の体積に対する割合を求めましょう。同様に、表面積についてもその割合を求めましょう。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー acacia7 ベストアンサー率26% (381/1447) 2005/02/03 23:12 回答No.1 正四面体の一面である正三角形の高さと重心の高さを比較します。 正三角形をABCとして, AからBCへの垂線を下ろした点をDとします。 すると, AD:DB=√3:1 そして正三角形の中心をMとすると, BDMはADBと相似なので BD:DM=√3:1 ということで AD:DM=3:1 高さが3分の1で相似の正四面体ですから, 体積比は27分の1となりんす。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) redowl ベストアンサー率43% (2140/4926) 2005/02/03 23:14 回答No.2 >正四面体のすべての重心を結んでできる図形 正四面体の各面の重心 (正三角形の重心) ならどんな立体になるか 、わかるけど、・・・・ 問題文は、あっているのでしょうか? 真上から見た形(正三角形)を作図し、重心を結んで出来る図形(正三角形)の一辺の長さと元の正三角形の長さの比をとれば、 体積の割合も、表面積の割合もすぐ求まります。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 正四面体と正四角錐について 正四面体は4つの正三角形から成り立っている図形で、正四角錐は底面が正三角形で頂点からの垂線が底面の重心を通り、高さは決まっていない図形と考えてよろしいのでしょうか。 また、これは正n面体と正n角錐にもいえることでしょうか。 また、おそらく「正四面体≠正四角錐」だと思うのですが、これに「正」が除かれると、「四面体=三角錐」のような関係になると考えて良いのでしょうか。 よろしくお願いします。 四角形の重心 次の物体の重心を求めよ。 A■□D 一辺2aの正方形ABCDの一様な板の1/4を切り取った残りの物体 B■■C ■が元の板で□が切り取った板です。 面積から出そうかなと思ったのですが、 全体の面積 4a^2 切り取った分の面積 a^2 残りの面積 3a^2 切り取った分の面積をMとすると、全体の面積は4M、残りの面積は3M 残りの面積の重心をLとし、切り取った板の重心をO'とする。 OからO'までの距離 (√2)a/2 (分かりますかね!?) 3M×L-M×(√2)a/2=(√2)a/6 となりました。 答えは合っているのですが、 重心の公式→ XG=m1x1+m2x2/m1+m2 を使っていないのですが、いいのでしょうか? よかったら重心の公式を使った解法が知りたいです。 たぶん初歩的だと思いますが、理解度が浅いので解説をお願いします。 正四面体…… 正四面体の頂点から垂線をおろすと底面の重心に到達すると思うのですが、この点(重心にあたる点)は他に何か意味を成しますか? 正四面体の高さ・体積を求めるのに関係があるようなのですが……。 わかる方がいましたら教えてください。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 解析学の重心を求める問題を教えて下さい。 平面図形の重心(x,y)平面内の領域Dの重心はDの面積を|D|と書けば (1/|D|・∫∫xdxdy,1/|D|・∫∫ydxdy) と表される。 これを利用して次の問いに答えなさい。 半径a>0、中心角2θ(0<θ<π/2)の扇形Dを次のように配置する。 このとき、Dの重心を求めなさい。 D={(x,y):x^2+y^2≦a^2,-(tanθ)x≦y≦(tanθ)x} 分からず困っています。 この問題の答えを教えて下さい お願いいたします 正四面体 重心 ベクトル 1辺の長さが2の正四面体ABCDがある。Gを△BCDの重心、Hを△ACDの重心とし、直線AGとBHの交点をOとする。 (1)ベクトルAOをベクトルAB,AC、ADを用いて表せ (2)AO+BO+CO+DO(ベクトル)を求めよ。 (3)点Pがこの四面体の面上を動くときAP^2+BP^2+CP^2+DP^2のとりうる値の範囲を求めよ この問題に取り組んでいます (1)はベクトルAO=1/4(AB+AC+AD) (2)は0 となりました(自信なしです) (3)がどのように考えればいいのかわからなくて困ってます。 AP^2+BP^2+CP^2+DP^2という長さが最大になるときと最小になるときはどのようなときなのでしょうか? 回答いただければありがたいです。 よろしくお願いします 正四面体に内接、外接する球についての問題 正四面体に内接、外接する球についての問題がわかりません。 コメントいただけるとありがたいですm(_ _)m 一辺の長さが2の正四面体について、 (1)正四面体に外接する球(正四面体のすべての頂点を通る球)の表面積を求めよ。 (2)正四面体に内接する球(正四面体のすべての面に接する球)の体積を求めよ。 重心問題 問1 y=2sqrt(ax)とx=aで囲まれた密度が一様な図形の重心を求めよ。 問2 y=ax^2とy=aで囲まれた密度が一様な図形の重心を求めよ。 という二つの問題なのですが、全くといっていいほどわからないです。どうしたらいいのでしょうか? 正四面体の体積について 数Iからです。 Q.一辺の長さがaの正四面体の体積は、一辺の長さが1の正四面体の体積の何倍になるか。また、その体積をaで表せ。 体積を実際に求めることは、公式を一つ一つ使って求められるのですが、この問題だけが解りません。公式ばかりに依存し過ぎなのでしょうか。 解る方教えて下さい。お願いします。 数学の問題です。(正四面体) 一辺の長さが2の正四面体ABCDにおいて、辺CDの中点をMとする。このとき、次のものを求めよ。 1)線分AMの長さ 2)cos角ABMの値 3)△ABMの面積 4)四面体、ABCDの体積 図がなくて分かりずらいですが教えていただけないでしょうか。。 正四面体の体積 次の正四面体の体積を求めなさい。 という問題なのですが多分この頂点から垂直におろした高さが必要だと 思うのですが底辺のどこに垂線が着地するのかわかりません。 三平方の定理で求められるらしいのですがどなたか具体的な方法を教えていただけたら助かります。 いびつな図形の重心の求め方を教えてください。重心を求める基本があれば教 いびつな図形の重心の求め方を教えてください。重心を求める基本があれば教えていただけると助かります。大学では微分積分は勉強しました。 問題 直線Y=X+2と放物線Y=x^2で囲まれた領域Dの重心を求めよ。 図形の問題 次の図形のX,Yを求めよ。 下の正四角錐について、次のものを求めよ。 (1)xとyの値 (2)表面積 (3)体積 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 正四面体の問題 次の問題の解答&解説を教えて下さい! 『 1辺の長さが8の正四面体ABCDの辺上に,辺ABの中点をP,辺BC上にBQ=2となるように点Q,辺BD上にBR=2となるようにRをとる。 このとき,四面体ABCDの体積は,四面体BPQRの体積の何倍か求めよ。 』 初歩のことに迷ってます。 図形の面積や、体積の出し方に困っております。 小学生の算数ですが初歩的なことですし聞きにくく困り果ててます。 平行四辺形の体積はどう求めればよいのでしょうか・・・? また、すべての図形の面積や体積の求め方の載っているHPとかはないでしょうか。 今更ながらよろしくお願いします。 立体の体積と重心 次のような問題です。2つの円柱面x^2+y^2=a^2,x^2+z^2=a^2で囲まれたx>=0,y>=0,z>=0の領域を考える。このとき次のものを求める。 (1)体積V (2)重心(x,y,z) (1)については基本的な二重積分で、大学の講義でも習ったので解けたのですが、(2)のように不規則な形をした立体の重心を求める方法が分かりません。円錐、四角錐などは解けるのですが...。 考え方などをどなたか教えてもらえないでしょうか? 重心の問題 半径rの球の体積が4πr^3/3であることを利用して、半球の重心の位置を求めよ 上記の問題の詳しい解き方を教えて下さい。出来れば答えまで、宜しくお願いします。 ルベーグ可測集合ってなんですか??? ルベーグ可測集合を上手く捉えられません。 頭が悪いので簡単に説明して下さい。 今の自分の解釈は、 長さや面積や体積を持つ図形はどんな集合と言えるか?↓ ルベーグという名前の人が、これら(の図形)は測ることが出来るので、 長さや面積や体積を持つ図形の集合を「ルベーグ可測集合」と名付けた。 長さ確定図形・・・・・・・・・・・・ 1次元ルベーグ可測集合 面積確定図形・・・・・・・・・・・・ 2次元ルベーグ可測集合 体積確定図形・・・・・・・・・・・・ 3次元ルベーグ可測集合 という。 私の疑問は、Q1.長さや面積や体積を持つ図形以外に、ルベーグ可測集合に属するものは無いのか??? ということと、 Q2.「全ての図形はルベーグ可測というわけではない」 とは、どういう意味なのか??? ということです。測ることが出来ないくらい巨大な(宇宙サイズ?)図形に対して言ってるんですかね??? ちなみに、 面積(体積)がゼロの図形は、面積(体積)が0で確定しているので、面積(体積)を持つというそうです。 ってことは、面積(体積)0の図形はルベーグ可測集合に属しますよね? 面積が0の図形とは、円盤じゃなくて円周のこととか、 体積が0の図形とは、壁の無いお家(柱、骨組み)のこととか・・・ですか??? なんか的外れなことを言っていたらすみません・・・・ すっごく分かりやすく教えて下さい。 高校受験の図形の問題です 一辺がすべて6cmの正四角すいです。 問題1、正四角すいの高さを求めよ。(図のARの長さ) 答えは3√2cmだと思います。 問題2、台形の面積を求めよ。(図のCDGF) 答えは 27√11/4cm2 だと思います。 問題3、台形のところで切ったときの上の図形の体積 わかりません? 問題4、正四角すいの高さを台形のところで切ったときの上:下の高さの比(図のAQ:QR)わかりません? よろしくおねがいします。 重心を求める問題が分からなくて困っています 「x軸、x=1、y=x^2の3本の線で囲まれた形状を持つ一様な薄い板の 重心を求めよ」 という問題なんですがよく分かりません。 教科書を見ると、平面図形に対する図心の公式として xc =∫xdA /∫dA yc =∫ydA /∫dA というのが載っていましたが、どのように計算すれば良いのかが 分かりません。 どなたか教えていただけませんでしょうか>< 四面体の重心と外心 まず、条件として・・・ (1)四面体ABCDがありこの4頂点が点Oを中心とする球面上にある。 OAベクトルなどをa^などとあらわすとして (2)a^+b^+c^+d^=0が成り立ってる。 (3)AB⊥CD AD⊥BCが成り立っている。 ここで質問なんですが、この四面体が正四面体であることを示すとき (2)から点Oは四面体の重心であり 外心と重心が一致するから正四面体である。 みたいな証明は成り立つのでしょうか? 試験で書いたらダメだったので問題点を指摘していただけるとありがたいです。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など