締切済み 複素解析の写像について 2024/08/13 21:03 f(z) = (z-i)/(z+i) (z ≠ -i) によるy=1の直線の写像はどのような曲線になるか。というもんださいがわかりません。よろしくお願いします。 みんなの回答 (1) 専門家の回答 みんなの回答 gamma1854 ベストアンサー率52% (320/608) 2024/08/14 07:06 回答No.1 z=x+y*i が f(z) によって、w=u + v*i にうつるとします。(x, y, u, v : 実数) z=x+1*i のとき f(z)=(x+1*i - i)/(x+1*i+i)=x(x - 2*i)/(x^2+4). よって、u=x^2/(x^2+4), v=-2x/(x^2+4). すなわち、(u-1/2)^2+v^2=1/4. (円周) -------- 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 複素平面上の写像について 複素平面上の写像について 複素平面(z平面)上の領域 z:0<argz<π/4 が 写像f(z)によって複素平面上のどのような領域に写されるか. f(z)=z/(z-1) よろしくお願いします. 複素平面上の写像について 複素平面上の写像について わからないのでよろしくお願いいたします. 複素平面(z平面)上の領域 z:0<Rez<π,Imz>0 が 写像f(z)によって複素平面上のどのような領域に写されるか. f(z)=cos z よろしくお願いします 商写像の問題です 商写像の問題です。 Z:整数全体の集合 複素平面C上の同値関係~を z~z'⇔z-z'∈Z 商集合Y=C/~と 射影p:C→Yを考える。 Yに商位相を導入し、位相空間とみなす。 (1)C上の写像 f(z)=c(z+i) (c∈C,i:複素数) に対し、写像g:Y→Yでp・f=g・pとなるものが存在するための係数cの条件を求めよ。 (2)(1)において写像gが存在するとき、gは連続であることを示せ。 pが連続かつ開写像といいたいのですが、どの条件からいえますか? Yに商位相を導入するだけでpは連続かつ開写像なんですか? (1)はfが連続となるための条件を求めると言い換えていいですよね? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム y=1はw=1/zの写像でどうなる? 48歳の会社員です。独学で複素解析を勉強していて、分からないところがあるので 質問します。 複素解析の写像の問題で本の解答が誤っているように思うのですが、私の解答は 誤っているでしょうか ? ■問題 直線 y = 1 は w = 1 / z の写像でどんな曲線に移るか。 本の解答は |w - i / 2| = 1 / 2 なのですが、 |w + i / 2| = 1 / 2 の誤りではないかと思います。 w = 1 / z は z = 1 / w … (1) z = x + yi なので、y = 1 は z = x + i w = u + vi とおいて、(1)に代入すると x + i = 1 / (u + vi) x + i = (u - vi) / (u + vi)( u - vi) x + i = (u - vi) / (u^2 + v^2) (x + i)(u^2 + v^2) = u - vi x(u^2 + v^2) + i(u^2 + v^2) = u - vi u^2 + v^2 = -v u^2 + v + v^2 = 0 u^2 + v + v^2 + 1 / 4 = 1 / 4 u^2 + (v + 1 / 2)^2 = (1 / 2)^2 |u + (v + 1 / 2)i|^2 = (1 / 2)^2 |u + (v + 1 / 2)i| = 1 / 2 |w + i / 2| = 1 / 2 直線 y = 1 の点 z = i は w = 1 / z の写像で w = 1 / z = 1 / i = -i になりますが、 曲線 |w - i / 2| = 1 / 2 は 点 w = i / 2 を中心とした 半径 1 / 2 の円なので、点 w = -i は通りません。 曲線 |w + i / 2| = 1 / 2 は 点 w = -i / 2 を中心とした 半径 1 / 2 の円なので、点 w = -i は通ります。 私の解答は誤っているでしょうか ? 複素平面上の写像について わからないのでよろしくお願いいたします. 複素平面(z平面)上の領域 z:0<Rez<π,Imz>0 が 写像f(z)によって複素平面上のどのような領域に写されるか. f(z)=cos z 合成写像(元の定義域) 集合XからYへの写像をf、集合YからZへの写像をgとする。 合成写像(f・g)(x)を考えるとき、Z⊂Xでなければならない理由がわかりません。 教えてください。 g(x)はYからZへの写像です。fはXからYへの写像ですから、Zはfの定義域(X)に含まれていなくてはならないのですが、Z⊆Xでもよい気がするのですがいかがでしょうか? 複素関数の写像の問題です。 z平面で定義された一次分数変換ω=f(z)で領域{z││z-1│<1} を{ω│Imω>0}に写像し、かつf(1/2)=i f(0)=0であるものを求めよ。という問題なのですが、解答は非調和比保存の定理を用いて解答しているのですがその際 z=2の点がなぜω=∞になるのか分からなく困っています。手助けお願いします。 写像 写像 f:R^3→R^2 をf(x,y,z)=(x-y,y-z)で定義するとき (1)fが線形写像であることを示せ (2)R^3⊃S1 := { ( x , x , 2x ) | x∈R } とおくとき、これらはR^3の部分集合であり f(S1∩S2)⊂≠f(S1)∩f(S2) であることを示せ。 この問題の解答を教えてください、よろしくお願いします。 線形写像について 教科書や参考文献を見ても、線形写像のことがわかりやすく書かれてありません。しかし、問題としては、かなりのウェイトで出てくるのです。そこでですが、f:R^3→R^4,f([x,y,z,w])=[x-y+z+w,x+2z-w,x+y+3z-3w]の線形写像の像と核の基底と次元の求め方を教えてください。 等角写像 等角写像 |z+5i/4|=3/4をw=(2zi-1)/(z+2i)により繰り返し写像する。 n回写像したときの図形と虚軸の交点の値とnを大きくしたときどのような図形になるか。 という問題で なぜ 「 n回写像したときの図形は、 実数軸(w=u)の直線または|w-(5i/4)|=3/4の方程式で示される円となり、 虚軸との交点は 写像か実数軸(v=0)のとき、原点(0,0)となり 写像が円のとき(0,5/4±3/4)=(0,2)と(0,1/2)になる。 」 となるのでしょうか? |w-(5i/4)|=3/4は|z+5i/4|=3/4に写像されないのではないでしょうか? n回写像したときの図形は、 n=1のとき実軸の直線で n≧2のとき 中心 i(1+9^{1-n})/(1-9^{1-n}) 半径 2/{3^{n-1}-(1/3^{n-1})} の円となり 虚軸との交点は n=1のとき0で n≧2のとき i[(1+9^{1-n})/(1-9^{1-n})±2/{3^{n-1}-(1/3^{n-1})}] になる。 nを大きくしたとき 点 i に収束する のではないでしょうか? f(z)=(2zi-1)/(z+2i) g(z)=(z-i)/(z+i) h(z)=z/3 とすると g^{-1}(z)=i(z+1)/(1-z) f=g^{-1}hg だから n回写像する変換は f^n=(g^{-1}hg)^n=g^{-1}(h^n)g と表される 中心-5i/4半径3/4の円 |z+5i/4|=3/4をgで写像すると w=g(z)=(z-i)/(z+i) z=i(1+w)/(1-w) |z+5i/4|=|i(1+w)/(1-w)+5i/4|=3/4 3=|w| 中心0半径3の円となる 中心0半径3の円 |z|=3をh^nで写像すると w=(h^n)(z)=z/3^n |w|=|z/3^n|=3^{1-n} 中心0半径3^{1-n}の円となる 中心0半径3^{1-n}の円 |z|=3^{1-n}をg^{-1}で写像すると w=g^{-1}(z)=i(z+1)/(1-z) z=(w-i)/(w+i) |z|=|(w-i)/(w+i)|=3^{1-n} n=1のときw~=wだから実軸となり,虚軸との交点は0 n>1のとき |w-i(1+9^{1-n})/(1-9^{1-n})|=2/{3^{n-1}-(1/3^{n-1})} だから 中心i(1+9^{1-n})/(1-9^{1-n}) 半径2/{3^{n-1}-(1/3^{n-1})} の円となる 虚軸との交点は i[(1+9^{1-n})/(1-9^{1-n})±2/{3^{n-1}-(1/3^{n-1})}] になる。 n=2のとき 中心i(1+9^{1-n})/(1-9^{1-n})=5i/4 半径2/{3^{n-1}-(1/3^{n-1})}=3/4 n=3のとき 中心i(1+9^{1-n})/(1-9^{1-n})=41i/40 半径2/{3^{n-1}-(1/3^{n-1})}=9/40 ここでnを大きくすると 中心は lim_{n→∞}i(1+9^{1-n})/(1-9^{1-n})=i に近づく 半径は lim_{n→∞}2/{3^{n-1}-(1/3^{n-1})}=0 に近づく 虚軸との交点は 点 i に近づく 複素解析 授業のプリントの問題で、 I=∫|z-(-i)|=2 e^πz/(z+i)^4 dz という問題があって、グルサーの公式を用いることにより、 I=2πi/3!×3!/2πi∫|z-(-i)|=2 f(z)/(z-(-i))^4 dz ただし、e^πz=f(z)と置いている。 というところまではわかったのですが、この先どうすればよいのかわかりません。お教えください。 写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、g:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 複素解析 z=x+iyの関数f(z)=e^yCOSx-ie^ysinxについて、 ・f(z)は(すべてのzで)微分可能であることを示せ。 ・f'(z)をxとyの式で表せ。 ・f'(z)/f(z)を求めよ。 合成写像について 合成写像の証明の問題がわかりません。 f:X→Y g:Y→Z h=g→f=Z として (1)hが全射なら、gもそうであることを示せ。 (2)hが単射なら、fもそうであることを示せ。 分かりにくいかもしれませんが、よろしくおねがいします。 写像の証明問題です。よろしくお願いします。 写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。 写像の問題について 写像の問題が分かりません。どなたかわかる方、回答よろしくお願いします。 (1)関数w=z^l(lは正の実数)によって、z平面上の領域0<argz<θはw平面上のどのような領域に写像されるか。 (2)z平面上の領域Ψ<argz<π-Ψ(0<Ψ<π/2)をw平面の上半面(0<argw<π)に写像する関数を求めよ。 (3)関数w=z+1/zによる、z平面の原点を起点とする半直線の写像を求めよ。また、この関数による写像がz=1で等角でないことを示せ。 (4)z平面上の領域x^2/cos^2Ψ-y^2/sin^2Ψ<4をw平面の上半面(0<argw<π)に写像する関数を求めよ。ただし、Ψは0<Ψ<π/2 複素関数の同等角について 次の問題なのですが、証明がわかりません。 f(z)=u(x,y)+iv(x,y)(z=x+iy)を正則関数とし、写像φ:(x、y)∈R^2 →(u(x,y),v(x,y))∈R^2 について考える。 f'(z。)≠0と仮定する。((x。,y。)を通り、角度αで交わる)2本の直線L1,L2を以下で定める: L1:(x,y)=(x。+tcosθ,y。+tsinθ) (t∈R) L2:(x,y)=(x。+tcos(θ+α),y。+tsin(θ+α)) このとき、曲線φ(L1)、φ(L2)が点φ(x。,y。)で交わるときの角度を求めよ。 という問題なんですが。答えは、等角性からαと思うんですが、導き出し方がわかりません。というのも、パラメータ表示されているので、微分もうまくいかないので、接ベクトルも出せない状況です。お願いします。 写像の連続性について (Z,d)から任意の距離空間(Y,d_Y)への任意の写像fが連続であることを証明したいです。 ただし、Zは整数全体の集合でd(x,y)=|x-y|です。 任意の写像fの連続性について証明するのでYの任意の開集合Oについてf^(-1)(O)がZの開集合であることを示そうと考えたのですが、fが任意なのでf^(-1)もどのような様子かわからず困っています。 以下、自分の回答を掲載します。間違えている点と、どのように考えるべきかを教えてください。 任意のx,y∈Zに対しf(x),f(y)が存在する。 Oは開集合なのであるε(>0)が存在し、 f(y)∈N(f(x);ε)⊂O ⇔ y∈f^(-1){N(f(x);ε)}⊂f^(-1)(O) ここまでです。よろしくお願いします。 複素関数の1例について質問 複素関数の1例について質問 f(z)=z^2-3z+2 のとき、その導関数は f’(z)=2z-3 で良いですよね。 逆に、曲線Cに関する積分は、(cの表示は省略) ∫f’(z)dz=∫(2z-3)dz=z^2-3z+C となるので良いと思います。 ここで、z=x+iy と置いて同様のことをすると、 f(z)=(x+iy)^2-3(x+iy)+2 =(x^2-y^2-3x+2)+i(2xy-3y) f’(z)=∂u/∂x+i∂v/∂x =2x-3+i(2y) (=2(x+iy)-3=2z-3) で良いですよね。 逆に、曲線Cに関する積分は、(cの表示は省略) 一般に ∫f(z)dz=∫(udx-vdy)+i∫(vdx+udy) なので、 ∫{2x-3+i(2y)}dz =∫(2x-3)dx-∫2ydy+i∫2ydx+i∫(2x-3)dy =x^2-3x-y^2+C+i(2xy)+i(2xy-3y) =(x^2-y^2-3x+C)+i(4xy-3y) となりましたが、 虚数部が(2xy-3y)になっていません。 何故でしょうか? ご教示、よろしくお願いします。 写像について 問題 写像f:A→Aとする。写像fが単射ならば全射、また全射ならば単射である事を示せ。 <自解> 写像fが単射ならば a_1,a_2∈A、f(a_1)=f(a_2)⇒a_1=a_2(単射の命題の対偶) 写像fはAからAへの写像より ∀y∈A、∃a∈A、st y=f(a)∈A 故に、写像fが単射ならば全射。 また、 写像fが全射ならば ∀y∈A、∃a∈A、st y=f(a)∈A … ここから単射をどう示したらいいのかわからなくなりました。 単射から全射の証明も、不十分な気がします。 どう示すべきか教えて頂きたいです。よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など