- ベストアンサー
面素ベクトルについて質問です
位置ベクトル r↑=(x,y,f(x,y)) とすると ds↑=(∂r↑/∂x × ∂r↑/∂y)dxdy =(-∂f/∂x,-∂f/∂y,1)dxdy ・・・① また 位置ベクトルの独立変数を変えて r↑=(g(y,z),y,z) として ds↑=(∂r↑/∂y × ∂r↑/∂z)dydz =(1,-∂g/∂y, -∂g/∂z)dydz・・・② となりますが①と②は同じですか?
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
式①と式②は異なる式です。位置ベクトルの表現形式が異なるため、微小距離要素 ds↑ の表現形式も異なるからです。式①では (x, y) 平面上の高さが f(x,y) で表されるような曲面上を微小距離 ds↑ が動く場合を考えています。式②では yz 平面上で g(y,z) によって表される曲線上を微小距離 ds↑ が動く場合を考えています。従って、微小距離要素 ds↑ の式が異なるため、式①と式②は同じではありません。