第2種楕円積分の逆関数?
こちらhttp://oshiete1.goo.ne.jp/qa3629088.htmlで
********************************************************
Cをある定数とおいた時、E(φ,k)を第2種楕円積分として、
E(φ,sqrt(1/2))=C
の時のφの値を求めるにはどうすればよいでしょうか?
E(φ,k)の逆関数がわかればいいのでしょうか・・
********************************************************
という質問をし、
********************************************************
> 実はとあるプログラムの中で、任意のEに対するφを随時出力したい
> (例えばy=sinφのサインカーブ上を+φの向きにS[m]進んだとき、その位置でのφの値を求めたい)
> のですが、楕円積分関連のサブルーチンを探しても「ニューメリカルレシピ・イン・シー」程度しか見つからず、
> またそれは与えられたφ、kからE(φ,k)を求めるものにすぎませんでした。
与えられたφ,kからE(φ,k) を求めるサブルーチンをお持ちでしたら,
f(x) = C という方程式の数値解を求める手法(二分法や Newton 法)と組み合わせればいいのではないでしょうか.
Newton 法では f'(x) が必要ですが,今は f(x) が楕円積分になっていますから,
f'(x) は楕円積分の被積分関数そのものです.
********************************************************
という返答を戴いたのですが、E(φ,k)は定積分であり、この場合被積分関数をそのままf'(x)としてしまってよいのかと悩んでおります。(Newton法を理解していなかった為なのですが。)
元の質問ページを使えば良かったのですが、誤って締め切ってしまったため、Newton法に関する疑問に対する回答、さらに宜しければ元の質問に関する回答もいただけると嬉しいです。