- ベストアンサー
数学の問題です。どなたかお願いします。
この問題では,eは自然対数の底,logは自然対数を表す。 実数a,bに対して, 直線l:y=ax+bは曲線C:y=log(x+1)と,x座標が0≦x≦e-1を満たす点で接しているとする。 (1)このときの点(a,b)の存在範囲を求め,ab平面上に図示せよ。 (2)曲線Cおよび3つの直線l,x=0,x=e-1で囲まれた図形の面積を最小にするa,bの値と,このときの面積を求めよ。
- みんなの回答 (1)
- 専門家の回答
この問題では,eは自然対数の底,logは自然対数を表す。 実数a,bに対して, 直線l:y=ax+bは曲線C:y=log(x+1)と,x座標が0≦x≦e-1を満たす点で接しているとする。 (1)このときの点(a,b)の存在範囲を求め,ab平面上に図示せよ。 (2)曲線Cおよび3つの直線l,x=0,x=e-1で囲まれた図形の面積を最小にするa,bの値と,このときの面積を求めよ。