ベストアンサー 一次関数を教えて下さい 2021/11/12 00:01 点Eはy軸上の点で、せのy座標は正である。三角形ABDと三角形DEBの面積が等しくなる時、点Eの座標を求めよ。 この投稿のマルチメディアは削除されているためご覧いただけません。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー asuncion ベストアンサー率33% (2127/6290) 2021/11/12 00:52 回答No.1 △ABD = 6 * 5 / 2 = 15 = △DEB BDの式を求める。y = ax + bとおく。 (-3, 5)を通るから、5 = -3a + b ... (1) (3, 0)を通るから、0 = 3a + b ... (2) (1) - (2)より-6a = 5, a = -5/6 (2)に代入して、b = -3a = 5/2 ∴BDの式は、y = -5x/6 + 5/2 E(0, e), F(0, 5/2)とおく。 △DEB = △BEF + △DEF = 3(e - 5/2) / 2 + 3(e - 5/2) / 2 = 3(e - 5/2) = 15 e - 5/2 = 5, e = 15/2 ∴E(0, 15/2) 質問者 お礼 2021/11/12 08:40 理解できました。 この問題は、私には少し難しかったです。 有難うございました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 関数 図のように.関数y=1/4x^2のグラフ上の.x座標が2である点をP. x座標が正でy座標が4である点をQとし.y軸上の点(0.4)をRとする. このとき.△PQRの面積を求めてください お願いします 関数 直線Lと点A(-1、-2)がある。直線Lとx軸との交点をB,直線Lとy軸との交点をCとする。△ABOの面積が△AOCの面積の8倍となるとき、直線Lの傾きを求めなさい。ただし、点Bのx座標、点Cのy座標は正の数とする。 関数 図のように、座標平面のX軸上を原点O(0.0)から点A(6.0)まで動く点Pがある。このとき、線分OP、PAをそれぞれ1辺とする正方形OPBC、PADEをX軸より上側につくる。また、2点O、Eを通る直線をL、2点A、Bを通る直線をmとし、Lとmの交点をQとする。座標軸の1目もりを1cm、円周率をπとする。 (1)点PのX座標が4のとき、△QOAの面積を求めなさい。 (2)点Pが動くことにより点Qも動き、△QOAの面積も変化する。△QOAの面積が最も大きくなるとき、その面積を求めなさい。 答えは(1)36/5 (2)9です。 (1)はわかったのですが、(2)が分かりません。求め方を教えてください! 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 関数 図のように座標平面上に正六角形OABCDEがある。Oは原点で、点Cはy軸上にあり、点A、Eは放物線y=1/2x^2上にある。 放物線y=ax^2が点B、Dを通るときaの値を求めよ。 点Aのx座標をtとするとy座標はt/√3と表すことができるとありますが、どうしてy座標はt/√3なのでしょう。。 1次関数 辺BCがX軸上にある長方形ABCDがあり、点A、Dのy座標は正で、それぞれ直線のy=2X+6、y=-2X+6上にCD=2ADになるときの長方形ABCDの面積を求めよ。 という問題です。できれば式もお願いします。 関数 直線Lは2点A(-2.3)B(6.7)を通る。原点をOとし、座標軸の1目もりを1cmとする。 (1)点PをX軸の正の部分にとる。△APBの面積が△AOBの面積の3/2倍になるとき、点PのX座標を求めなさい。 答えは4です。 求め方を教えてください! 数学の問題です! 数学の問題です! A,Bはy軸上の点、Cはx軸上の点、Dは線分AC上の点である。また、直線BDの式は、y=ax+2である。点Aのy座標が6、点Cのx座標が3で、△AOCの面積が△ABDの面積の三倍であるとき、aの値を求めなさい。 数学得意な方、教えてください!よろしくお願いします。 関数 直線Lの式はy=X+3で、点Aは直線L上にあり、点BはX軸上にある。△ABCはAC=BC、∠C=90°の直角二等辺三角形で、辺ABはy軸に平行である。また、点Bの座標を(t,0)とする。ただし、t>0である。座標軸の1目もりを1cmとする。 (1)△ABCの面積をtを使った式で表しなさい。 (2)△ABCの面積が9cm²のとき、点Bの座標を求めなさい。 答えは(1)1/4(t+3)の2乗 (2)(3.0)です。 求め方を教えてください。お願いします(>人<;) 一次関数 直線 y=2x と y= -1/3+12 は点Aで交わっている。直線 y=2x 上の2点O、Aの間に点Bをとり、 y= -1/3+12 上に点Cをとる。2点B、Cから x軸に引いた垂線と x軸との交点をそれぞれ D、Eとすると、四角形 BDECは正方形になる。このとき、Bの座標を求めなさい。 求め方を教えてください。 関数 直線Lは2点A(0.4)B(2.0)を通っている。直線mの式はy=-X/2-2であり、y軸と点Cで交わっている。直線Lとmの交点をPとする。また、直線nは原点Oを通り、直線L、mとそれぞれ点Q、Rで交わっている。座標軸の1目もりを1cmとする。 (1)△OCRの面積と△RQPの面積が等しくなるとき、点Qの座標を求めなさい。 (2)四角形ORPBの面積を求めなさい。 答えは(1)(6.-8)(2)28/5です。 求め方を教えてください! 中学の二次関数です グラフ上で 放物線 y=1/2x^2 と直線ア y=ax+b が2点A,Bで交わっています。点Aのx座標は-1、点Bのx座標は正。点Cは直線アとy軸との交点。点Cを通り線分OAに平行な直線とx軸との交点を点Dとする。点Dのx座標をaとし、三角形AOCの面積をaの式で表したいのですが、 このとき点Aの座標は(-1,1/2) 三角形AOCと三角形DCOは一辺とその両端の角が等しいから、合同かと思うのですが、その後がわかりません。 直線アの式は、y=1/2x+1だと思うのですが、これも合っているかわかりません。わかりやすく教えていただけますか。 関数:グラフ上の面積の求め方について 教えてください(;;) 問題集の解答に解説が載っていなく、困っています。 関数y=1/4x^2のグラフ上に3点A、B、Cがあり、x座標はそれぞれ-4、2、6である。点Pは線分AC上にあり、△AOCの面積と四角形AOBPの面積が等しくなっている。線分ACとy軸の交点をD、線分BPと線分OCの交点をEとする。ただし、座標軸の単位の長さは1cmとする。 (問)四角形AOEPの面積を求めよ。 問題集には、グラフがのっていたのですが・・・載せられなくてすみません。 問題の内容だけで わかりますでしょうか?(^^; 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 一次関数です 次のxとyの関係を表す式をy=~ の形で表しなさい。 (1)体積が60cm3の角柱で、底面積xcm2と高さycm 次の条件を満たす直線の式を求めなさい。 (1)直線 y=-x+1 と y軸上で交わり、直線 y=3x-6とx軸上で交わる。 次の点の座標も求めなさい。 (1)2点(-1,-7),(3,5) を通る直線がy軸と交わる点。 (2)2点(0,-3),(4,-5) を通る直線がx軸と交わる点。 一つずつでもいいので、教えてくださると助かります。 2次関数についての問題で解答解説を失くして困っています。解法を教えてく 2次関数についての問題で解答解説を失くして困っています。解法を教えてください。(中学3年生) 2次関数Y=ax^2(a>0,^2はエックスの2乗のことです)上にx座標が正である点Aとx座標が負である点Bをとります。(図では点Aのy座標よりも点Bのy座標の方が数値が大きいです。)2点A,Bから座標軸に下ろした垂線との交点をP(X軸上の正側)Q(Y軸上でSより下側)R(X軸上の負側)S(Y軸上でQより上側)とします。Oを原点としてOR=2OPが成り立ち、Pの座標を(p,0)とするとき、次の問いに答えなさい。 (1)Aの座標をa,pを用いて表しなさい。 四角形OPAQが正方形になるとき、以下の問いに答えなさい。 (2)正方形OPAQの1辺の長さpをaを用いて表しなさい。(問いの意味が理解できません?) (3)直線ABの傾きを求めなさい。(直線は右下がりです) (4)△BPQの面積をaを用いて表しなさい。 (5)角OABの2等分線と2次関数Y=ax^2(^2はエックスの2乗の意味です)との交点をCとします。四角形OABCの面積が1のとき、aの値を求めなさい。 以上、わかりやすい解答解説をお願いします。<(_ _)> どうしても解けません(二次関数と一次関数) 二次関数y=1/3x2のグラフ上に2点A・Bがあり、この2点を通る直線はx軸と点Cで交わる。 点Aのx座標はa、点Bの座標は(-6,12)である。 *最初の二次関数は「y=3分の1xの二乗」。 △OABと△OCAの面積の比が2:1の時、aの値を求めなさい。 ただしa>0とする。 答えは2√3なのですが、解き方が分かりません。 お分かりの方がいらっしゃったら是非、解き方を教えてくださいませ。 関数 図で、直線mの式はy=X-3で、y軸と点Bで交わっている。直線Lはy軸と点A(0.9)、直線mと点Cでそれぞれ交わっている。点CのX座標は9である。座標軸の1目もりを1cmとする。 (1)直線m上の点Bよりも右側に1点Pをとる。△ABPと△APCの面積の比が4:5となるとき、直線APの式を求めなさい。 答えは(1)y=-2X+9です。 求め方を教えてください! 数学の問題です。 数学の問題です。 直線l、mはそれぞれ関数y=x+5,y=-2x+8のグラフであり、点Aで交わっている。直線lとx軸、y軸との交点をそれぞれB,Cとし、直線mとx軸、y軸との交点をそれぞれD,Eとする。Oは原点とし、座標軸の1めもりを1cmとする。 △ABDの面積は何平方cmか。 また、点Cを通り直線mに平行な直線とx軸との交点の座標を求めなさい。 という問題です。 長くて申し訳ありません。分かる方、教えてください。よろしくお願いします。 一次関数 関数 y=-x+12 のグラフと関数 y=2x のグラフとの交点を、A、y=-x+12とx軸との交点をBとします。また、線分OA上に点Pをとり、点Pを通りx軸に平行な直線と直線ABとの交点をQとします。 これについて、次の問いに答えなさい。 (1) 点Pのx座標が1のとき、線分PQの長さを求めなさい。 答え 9 (2) △AOQの面積と△BOQの面積が等しい時、直線OQの式を求めなさい。 答え y=1/2x (3) 線分PQの長さが8のとき、点Qのx座標を求めなさい。 答え 28/3 (1) (2) の求め方はわかりましたが、(3)が分かりません。 求め方を教えて下さい。 2次関数がわかりません。 右の図のような直線y=x+3…(1)と放物線y=-1/4(四分の一)x²…(2)がある。 x軸上の正の部分に点Pをとり、その座標を(a,0)とする。 また、点Pを通り、y軸に平行な直線と直線(1)および放物線(2)との交点をそれぞれQ,Rとする。 次の問いに答えなさい。 (1)a=4のとき、線分QRの長さを求めなさい。 (2)a=2のとき、△ORPを、y軸を軸として1回転させてできる 立体の面積を求めなさい。※円周率はπとする。 (3)△ORQがOR=OQの二等辺三角形になるとき、 aの値を求めなさい。 (4) (3)のとき点Qを通り、△ORQの面積を2等分する直線と x軸およびy軸との交点をそれぞれS,Tとする。 このとき、線分OSとOTの長さの比を最も簡単な整数の比で表しなさい。 という問題です。 先ほどの質問、画像が見えなかったりと 大変申し訳ありませんでした。 (1)、(2)は自分で解いてみましたが (3)、(4)はどうしてもわかりませんでした。 お願いします。 2次関数がわかりません。 また、解けなかった問題があるので 教えてください。お願いします。 右の図のように、2つの関数y=ax²(aは正の定数)…(1)、 y=-x²…(2)のグラフがある。(2)のグラフ上に点Aがあり、 点Aのx座標を負の数とし、点Oは原点である。 次の問いに答えなさい。 (1)(1)についてxの変域がー2≦x≦0のとき、 yの変域は1≦y≦8である。aの値を求めなさい。 (2)点Aのx座標をー2とし、点Aを通りx軸に平行な直線と(2)のグラフとの 交点のうち、点Aと異なる点をBとする。点Bとx座標が等しい(1)のグラフ上の点を Cとする。(1)のグラフ上に点Dを、x座標がー3となるようにとる。四角形ABCDの 面積が25、aの値を求めなさい。 です。お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
理解できました。 この問題は、私には少し難しかったです。 有難うございました。