ベストアンサー 誰も答えられない線形代数 2020/07/05 22:28 何回きいても誰れも答えられません 3×3行列の 222 022 002 の広義固有ベクトルを計算式ありで解説してください みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー ddtddtddt ベストアンサー率56% (180/320) 2020/07/06 12:58 回答No.1 最初に行列が対角化可能で、固有値が3重根になる場合を考えてみます。典型的には添付図冒頭のような対角行列の場合です。これは単位行列Eの定数倍なので、固有空間は3次元の全空間です。任意のu=(x,y,z)が、固有値2に属する固有ベクトルになります。こういう場合でも、互いに独立な3つの固有空間で全空間を直和分解しておくと便利です。すぐに思いつくのは、互いに独立な固有ベクトルとして、e1=(1,0,0),e2=(0,1,0),e3=(0,0,1)を用いる事です。単位行列の定数倍の行列の場合、何でも固有ベクトルになるので、e1,e2,e3が固有ベクトルなのは明らかです。という事はしかし、任意の互いに独立なベクトルu1,u2,u3が張る固有空間でも、全空間を直和分解できる事になります。普通は便利になるようにu1,u2,u3を選びます。一般的にいってたいがい便利なのがe1,e2,e3であろうというわけです(^^;)。このように固有値が重根になる場合には、人間の方で固有ベクトルを選択する必要があります。 問題の行列はいわゆるジョルダンの標準形におけるジョルダン細胞の形をしているので、対角化可能ではありません。このとき固有ベクトルは1本しかなく、3本の固有ベクトルが張る固有空間で、全空間を直和分解できません。そこで根ベクトル空間を定義します(広義固有ベクトル空間)。 Aを行列として、行列多項式φ(A)=A^n+k1・A^(n-1)+k2・A^(n-1)+・・・+kn-1・A+kn・Eを考えた時、φ(A)u=0となるベクトルを、ベクトルuは行列多項式φ(A)で消去されると言います。k1,k2,・・・,knはスカラーです。この用語を使うと、(普通の)固有ベクトルは、 (A-λE)u=0 (1) となり、A-λE=(A-λE)^1で消去されるので、高さ1の根ベクトル(広義固有ベクトル)と言われます。λは固有値です。 (A-λE)^2 u=0 (2) なら、高さ2の根ベクトル、 (A-λE)^3 u=0 (3) なら、高さ3の根ベクトルです。根ベクトル空間の定義は、「(A-λE)^mで消去されるベクトルu全体」となり、(A-λE)の次数mを根ベクトル空間の高さと言います。根ベクトル空間の次元は、その高さに一致します。 いまλ=2の3重根なので、ケーリー・ハミルトンの定理から、 (A-λE)^3=0(零行列) が成り立ち、全空間は(A-λE)^3で消去されます。要するに全空間は高さ3の3次元の根ベクトル空間です。(1)(2)(3)を見れば明らかですが、高さ1の根ベクトルは高さ2,3でもあり、高さ2の根ベクトルは高さ3でもあります。よって3次元の全空間は、 [全空間]=[高さ1の根ベクトル]+[高さ2の根ベクトル]+[高さ3の根ベクトル] の形に分解できるはずです。ただし上記では(1)(2)(3)より、高さ1,2,3の根ベクトルに重複があって直和分解になりません。そこで、 [全空間]=[(A-λE)u=0となる、固有ベクトル] +[(A-λE)u≠0かつ(A-λE)^2 u=0となる、高さ2の根ベクトル] +[(A-λE)u≠0かつ(A-λE)^2 u≠0かつ(A-λE)^3 u=0となる、高さ3の根ベクトル] と「選択すれば」、高さ1,2,3の根ベクトル空間による直和分解になるはずだぁ~!、というわけです(^^;)。これがジョルダン基底の考えです。 具体的な計算手順は、添付図の1),2),3)になります。 1) 最初に全空間から固有ベクトルを選択します。 u=(x,y,z)として普通に固有方程式(A-λE)u=0を解けば、 u1=(1,0,0)で十分とわかります。 u1によって張られる固有空間をV1で表します(明らかにx軸)。 2) 次に高さ2の根ベクトルを選択します。 (A-λE)^2 u=0を解けば良いわけですが、(A-λE)u≠0でもあって欲しいので、 u=(x,y,z)からu1成分を抜いておきます。 それにはV1の直和補空間からuを選べばOKですが、 V1の直和補空間のとりかたは一意ではありません。 ここでは最も簡単にx軸であるV1に直交するyz平面からuを選び、u=(0,y,z)として、 (A-λE)^2 u=0を解きます。 結果は、u2=(0,1,0)で十分。対応する根空間をV2とすれば、これはy軸。 3) 最後に高さ3の根ベクトルを選択します。 (A-λE)^3 u=0を解けば良いわけですが、(A-λE)^3=0(零行列)でした。 よってV1とV2の直和補空間が、求める高さ3の根空間です。 V1とV2はx軸とy軸だったので、V3は簡単にz軸とするばOKです。 u3=(0,0,1)で十分。 計算の各ステップで直和補空間の取り方を単純にしておかないと、直和補空間の選択が次第に複雑化するだろうというのはわかると思います。ここでは最も単純なものを選びました。高さ1の固有空間を除き、広義固有空間は一意には定まりません。人間の選択になります。 画像を拡大する 質問者 お礼 2020/07/06 23:42 ありがとうございます 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) ddtddtddt ベストアンサー率56% (180/320) 2020/07/07 15:49 回答No.3 #1です。#2さんの系統的な選択方法が標準です。この方法は忘れていました(^^;)。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 f272 ベストアンサー率46% (8653/18507) 2020/07/06 23:08 回答No.2 A=与えられた3x3行列,λ=2とすれば (A-λE) u1=0 からu1=(1 0 0)^T (^Tは転置行列を表す) ここで (A-λE) u2=u1 とすればu2=(0 1/2 0)^Tであって (A-λE)^2 u2=(A-λE) u1 = 0 かつ(A-λE) u2 = u1 ≠ 0 さらに (A-λE) u3=u2 とすればu3=(0 -1/4 1/4)^Tであって (A-λE)^3 u3=(A-λE)^2 u2 = 0 かつ(A-λE)^2 u3=(A-λE) u2 = u1 ≠ 0 かつ(A-λE) u3= u2 ≠ 0 となる。これで直和分解ができたことになる。 u1が固有ベクトルで,u2,u3が広義固有ベクトルです。 もちろん,この分解は一意ではないことは#1さんの言う通りですが,このようなやり方で広義固有ベクトルを求めていけば J = [u1 u2 u3]^(-1) A [u1 u2 u3] となる。ここでJはジョルダン細胞(以下の形)です。 [2 1 0] [0 2 1] [0 0 2] 質問者 お礼 2020/07/06 23:42 ありがとうございます 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 線形代数について 線形代数についていくつか質問があります。 (1)対称行列を対角化する際、固有ベクトルの大きさを1にする必要があるのですか?任意の大きさでは駄目なのですか? (2)対角化する際、U^-1AUと計算すると思うのですが、これの計算をしなくて、固有値を入れたものをいきなりだしてよいのですか? (3)根本的な質問で恥ずかしいのですが、行列式で出される値の意味がよく分かりません。行列との関係などを教えてください。 どれか一つでもいいので分かれば教えてください。 線形代数学の教科書 大学工学部の線形代数学の、問題が豊富で、その解説の詳しい参考書を探しています。線形代数ではありません。具体的にいうと面積・体積と行列式、行列式の計算、余因子行列とクラーメルの公式、固有値と固有ベクトル、正方行列と対角化、内積と転置行列、直行行列と実対称行列の対角化、二次形式の標準化、一般固有空間、ジョルダン標準形が載っているものです。 線形代数の問題です 線形代数の問題です。 いろいろ考えましたがわからないので教えて下さい。 ベクトルa1,a2,a3が次のように与えられている。ここで、記号tは転置記号であり、a1tは行ベクトルになる。 a1=(1 0 1),a2=(1 1 -1),a3=(-1 2 1)(縦に並べてある) A=a1a1t+(1/3)a2a2t-(1/6)a3a3t 1)行列Aの行列式の値と逆行列を求めよ 2)行列Aの固有値とそれに対応する固有ベクトルを求めよ 3)部分空間{x|x=t1a1+t2a2,t1,t2∈R}内の点xの関数(x-a3)tA(x-a3)の最小値とその最小点を求めよ。 自分の回答 1)行列A=(1/6) [7,4,5] [4,-2,-4] [5,-4,7] 行列式の値はー2 逆行列は掃き出し法で求め、 5/72 8/72 1/72 21/144 29/532 -8/72 -1/72 -22/216 5/72 2) 固有値は2,±1 λ=1の時固有ベクトルはk1(1 -1 -1) (縦ベクトル) λ=-1の時固有ベクトルはk2(1 -2 -1) (縦ベクトル) λ=2の時固有ベクトルはk3(1 0 1) (縦ベクトル) 3)はどうすればよいかわかりません。 3)だけでも良いので詳しい方解答・解説をおねがいします。 自分の求めた値は逆行列以外は切れの良い値になっているのでおそらくあっているのではと… 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 線形代数について 次の行列のすべての固有値と、それぞれの固有値に対応する固有ベクトルをひとつずつ求めよ。 (1)第1行が(1,2,2)、第2行(-2,5,2)、第3行が(1、-2,0)である行列 (2)(i,j)成分が|i-j|を2で割ったときの余りに等しい三次行列 という問題がわかりません。誰かわかる人がいたら教えてください。お願いします。 線形代数 行列A= [0, -2, 2 ] [4, -3, -4] [-1, -1, 3] Aの最小固有値をαとすると(i),(ii),(iii)を満たす実ベクトルa=[a1,a2, 1],b=[b1,b2,b3] を求めよ。 (i)Aa=αa (ii)Ab=αb+a (iii)aとbは直交する。 この問題が分かりません。教えて下さい。 Aの固有値はλ=-1,2 λ=-1の時の固有ベクトル=[2,2,1] ということは計算でわかったので、 α=-1,a=[2,2,1]まで出来ました。 しかし、この先、bを出すことができませんでした。 線形代数 固有値について 次の正方行列に対して(i)固有多項式を求めよ(ii)固有値を求めよ(iii)各固有値tについて固有空間Wを求めよ |7 12 0| |-2 -3 0| |2 4 1| | |は縦につながっていると考えてください(3次の正方行列です。) 固有ベクトル、固有値は出せました(固有値はt=1と3) t=3の固有空間も出せたのですが、解説をみるとt=1の時の固有空間は | -2 | | 0 | c1| 1 | +c2| 0 | となっていました。 | 0 | | 1 | t=1の時行列をどんどんと解いていくと最終的にx+2y=0というのが出てきました。 c1のやつが出てくるのはx+2y=0から分かるのですが、 ここで疑問に思ったのがなぜc2のやつが出てきたのかということです。 分かる方ぜひ理由を教えてください 線形代数の対角化の問題です。お願いします。 こんにちは。 独学で線形代数を勉強してしているものです。 早速ですが、力を貸していただけませんでしょうか・・・ /////////////////////////////////////////// 下記の行列をAとして、A^(-2)を求めよ。 | -3 0 2 | A= | -1 -2 -1 | | -2 0 2 | /////////////////////////////////////////// という問題なのですが、解けません。。 まず、対角化が出来なくて困っています。 固有値は、λ=-2(重解)、1 の2つだと思うのですが、 固有値を-2としたとき、固有ベクトルxを求めるにあたって、 Tx=0 とするべきTが、 | -1 0 2 | T= | -1 0 -1 | | -2 0 4 | となり、1行目と2行目で矛盾が生じてしまいます。 固有値の求め方が違うのでしょうか?全く分かりません。 また、対角化が出来たとしても、-2乗というのはどういう計算になるのやら さっぱり分かりません。 回答・解説の無い問題で困っています。 どうぞ宜しくお願いします。 線形代数の質問です。 行列 A=|6 2| |2 3| について固有値はλ=2,7 固有ベクトルはx=t1≠0,x=t2≠0として |x| = t1 | 1| |x| = t2 | 1 | |y| |-2| , |y| |1/2| と計算で出したのですが 正規直行行列により対角行列に変換する場合は 上の結果より P=| 1 1 | | -2 1/2 |とおけば P*-1AP=| 2 0 | | 0 7 | となる という回答でよろしいのでしょうか? また、2次形式A(x)=X*TAX=6x1*2+4x1x2+3x2を標準形に直せという問題がどのような解法をすればいいのかわかりません。 以上2点ご教授願います。(私が解いた固有値、固有ベクトルが間違っている場合もご指摘ください) よろしくお願いいたします。 線形代数の問題なんですが A=(1 0 1) (0 1 0) (1 0 1) と3次元空間上のベクトル r1=(1/√2) (0) (1/√2) があります。 行列Aの固有ベクトルq1,q2,q3を求め、それらを正規化したベクトルp1,p2,p3を基底とする座標系でr1を求めよ、という問題が解けません。 ここで行列Aの固有値は0、1、2で固有ベクトルは (1) q1=(0) (-1) (0) q2=(0) (0) (1) q3=(0) (1) です。 分かりづらくてすいませんがどうか解き方を教えてください。 線形代数の解き方 (1) |2,-5||1,X|=|1,X||2,-5| |-4,1||Y,2| |Y,2||-4,1| の時検算せよ (2) 掃き出し法により |1,2,1,| |-1,1,-2| |1,0,3| の逆行列を求め、検算せよ (3) |1,3| |2,-4| の固有値と固有ベクトルを求めよ 答えはではなく、解き方を教えてください。 よろしくお願いします。 線形代数の問題で困っています 3行3列の行列C 3 1 1 1 2 2 1 2 (2+a) について(aは実数) 1)a=0のときの行列Cの固有値と固有ベクトルを求めよ 2)行列Cが正定符号行列となるaの範囲を求めよ 3)二次曲面x'Cx=0と直線x_1-1=x_2=x_3+1が接するときのaの値を求めよ。ただしx=(x_1,x_2,x_3)でx'は転置を表す。 という問題ですが、1)は固有値は0,2,5で2)はa>0でよいでしょうか? また3)の解き方がわからないので親切な方解答、解説をよろしくお願いします。 線形代数の質問です 問題が解けなくて困ってます(>_<) 1.行列A=|a+301 3a+303 6a+306| |201 202 203 | |101 102 103 | (1)Aの行列式を求めよ。 (2)Aが逆行列を持つための条件を求めよ。 2.行列A=|1 1 0| |2 -2 1| |4 -2 3| Aの固有多項式を求め、固有値をすべて求めよ。また、それぞれの固有値について固有ベクトルを一つずつ求めよ。 途中までは自力で解いたのですが、答えまで導けずにいます。 どれか一つだけでも構わないので、どうかよろしくお願いしますm(__)m 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 線形代数 どなたか解答よろしくお願いします!! 2次曲線2x^2+2√(3xy) +4y^2=5について (1)係数行列の固有値と対応する固有ベクトルを求めよ (2)直交変換を行って標準形を求めよ あつがましいですが、ヒントではなく解答でお願いします。 線形代数学の参考書 線形代数学の参考書で、お奨めのものを教えてください。問題が多く、その解説が詳しいものを探しています。偏差値がそれほど高くない、4年制の大学工学部で、専門基礎としてならう、線形代数学?です。2,2行列で、固有ベクトルをあわせた2,2行列(名前がわからない)を使って、連立微分方程式を解く、などの内容を勉強します。また、定理の証明などは載っていなくて構いません。 線形代数をmathematicaでときたいのですが 行列P1={{2,1}, {1, 2}}、P2={{1,3}, {4,2}}とする。 P1,P2について、固有ベクトルを大きさ1として単位円内に描け。 という問題をmathematicaを使って解きたいのですが、固有ベクトルは求めることができたのですが、それを矢印を使って図示するには、どのように入力すれば良いのでしょうか?。分かる人教えてください。 線形代数学 線形の問題です。 一部数Cですがわすれてしまったのでどなたか教えてください(__ (1)ベクトルの組a1,~...,amが独立ならば、rank(a1,~...,am)=mとなることを示せ。 (2)次の2つの行列式について、固有方程式とその解を求めよ。 (0 -15 -2 -1)←2x2行列 (4 -7 -2 4 -9 -3 -12 24 8)←3x3行列 線形代数の固有値の問題です vの転置行列をtvと表します。 問.v∈R3かつv≠0とし、a∈Rとして3次正方行列BをB=aE(3) + v*tvによって定める。 (1)Bvをaとvを用いて表すことによってvはBのある固有値に対する固有ベクトルであることを示し、vに対応するBの固有値をaとvを用いて表わせ。 (2)aはAの固有値であることを示し、aに対するBの固有空間はvで生成されるR3の部分空間の直行補空間であることを示せ。 という問題なんですが、固有ベクトルの定義に帰ってみて考えているのですが全然わかります。 tvがキーになっているように思います。 どなたか解説お願いします。 線形代数の問題の解き方を教えてください。 線形代数の問題の解き方を教えてください。 2次形式f(x1,x2)=x1^2 + 2x2^2 をベクトルX=(x1,x2)T および行列Aを用いてXTAXと表すものとする。 (1)Aを求めよ (2)行列Aの固有値λ1,λ2 および固有ベクトルX1,X2を求めよ。ただしλ1>λ2とし、固有ベクトルは長さを1に正規化するものとする。 (3)f(X1,X2)を求めよ。 (4)f(X3)を求めよ。ただしX3=(1-α)X1+αX2,0≦α≦1とする。またf(X3)を最小とするαを求めよ。 という問題なのですが、簡単な線形代数しか学んでいないためわかりません。 どなたか教えていただけないでしょうか? よろしくお願いします。 線形代数 行列 対角化 対角化について質問させて頂きます。 対角化とは、 「正方行列を適当な線形変換により、もとの行列と同値な 対角行列に帰着させること。」 と説明がありました。 ここで、同値とは具体的にどのような内容を指すのでしょうか? また、対角化を求める際、 正方行列Aに対してP^-1APとなる正則行列Pを求めます。 この正則行列Pは正方行列Aより求めた固有値に属する固有ベクトル を並べたものになりますが、これはなぜですか? なぜ、固有ベクトルを並べたものが正則行列Pになるのでしょうか? 以上、ご回答よろしくお願い致します。 線形代数学について 行列の計算はできるのですが(当然ですかね・・・)、行列というものが実感できずにいます。試験では問題ないのですが、何か納得いかないというかすっきりしません。次元とかランクって、一体何なのでしょうか。 またこれとは関係ないのですが、シグマを使って表したベクトルの変換則がよくわかりません。 どちらか一つでもご回答頂けると有難いです。お願いいたします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます