• 締切済み
※ ChatGPTを利用し、要約された質問です(原文:重心から各質量の求め方)

重心から各質量の求め方

このQ&Aのポイント
  • 長方形abcdの各点の質量を求める方法を教えてください。
  • 重心位置が分かっている長方形abcdにおいて、各点の質量を導くことは可能でしょうか?
  • 質量が分かっている長方形abcdの重心と各点の質量の関係について教えてください。

みんなの回答

  • TIGANS
  • ベストアンサー率35% (245/681)
回答No.6

aを左下原点にして、右回りにabcdとして x,y >0 のとき モーメント釣り合いの式  辺abに対して 0=xM+L(mc+md);  辺adに対して 0=yM+B(mb+mc);  辺cdに対して 0=(L-x)M+L(ma+mb);  辺bcに対して 0=(B-y)M+B(ma+md); を解けばいいんじゃないのかな。 これは長方形の板の四隅に秤を置いて板の上に分銅を乗せた時と同じ事象 だからちゃんと解が出るはずですねえ 振動するとかありえないし。

spana
質問者

補足

ご回答ありがとうございます。 記載頂いた式で考えてみましたが、下2つの式はM=ma+mb+mc+mdを用いて上2つの式を変形した式のため、他の条件式が必要だと考えています。

  • kon555
  • ベストアンサー率51% (1848/3569)
回答No.5

この辺りを見て計算すれば出る、はず http://wwwra.meijo-u.ac.jp/labs/ra007/murata/onlinetext/mecha/step1-3.htm こういう計算は単純化するために二次元化していますが、理屈は一緒です。

  • ohkawa3
  • ベストアンサー率59% (1535/2586)
回答No.4

仮に長辺:L、短辺:Bと、重心位置x、yの関係によって、重心位置を(x/L、y/B)とすれば変数の自由度が2です。質量に関しては与量がMだけなので、自由度が1です。 求めたい量(変数)がma、mb、mc、mdであってその数(自由度)が4ですから、与えられる量の自由度より、求めたい量の自由度の方が多いので、ma、mb、mc、mdを確定することはできない・・・・というのが数学的な答えと思います。 自由度の差が1ですから、既に与えられている条件から導くことのできない新規な条件を一つ付け加えれば、ma、mb、mc、mdを確定することができると思います。

spana
質問者

お礼

ご回答ありがとうございます。 新しい条件が必要ですか・・・ 全体質量と重心位置と各点の位置がわかれば、どうにか比で出せないかずっと考えていましたが数学的に無理なのですね。

  • kon555
  • ベストアンサー率51% (1848/3569)
回答No.3

どちらかの「質量」がモーメントですかね? または各点で支えた時の荷重? ともかく補足コメントなり一旦締めての再質問なりで、用語を整理してください。

spana
質問者

補足

ご回答ありがとうございます。 色々と説明不足ですみません。 各点で支えた時の荷重でお願いします。全体の質量Mを角部4点abcdで支えた場合、各点の荷重を求めたいという内容です。また厚み方向は非常に薄いため無視するという考えでお願いします。他意味が伝わらないところがありましたら、ご回答お願いします。

  • cbm51901
  • ベストアンサー率67% (2671/3943)
回答No.2

長方形は二次元空間に広がる「面」なので、質量を持たないと思いますが...。 直方体(長方体)ならまた話は別ですが...。

  • f272
  • ベストアンサー率46% (8626/18446)
回答No.1

「各点における質量をma、mb、mc、mdとし」と書いているのに,「各点の質量を導く」とはどういうことですか? 状況をちゃんと説明してください。

関連するQ&A