ベストアンサー 電験3種のテキストで1 2019/04/07 01:15 単位長当たりρ[C/m]の直線電荷からr[m]離れた点の電界Eは、 SE=2πrE=ρ/ε_0 とあるのですが、二つ目のイコールはなぜそうなるのでしょうか。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー N5200model05 ベストアンサー率39% (100/255) 2019/04/08 07:45 回答No.1 このあたりをご参考に http://eman-physics.net/electromag/linear_charge.html 通報する ありがとう 0 カテゴリ 学問・教育応用科学(農工医)電気・電子工学 関連するQ&A 電界の単位について よろしくお願いします。 大学受験問題集に載っている問題です。電界の強さの単位のつけ方について質問です。 問題 一直線上に、単位長さあたりσ(C/m)の正電荷が一様に分布している。この直線からr(m)離れた点での電界の強さを求めよ。 解答 対称性から電気力線は直線Lに垂直になる。Lに沿って長さl(m)の部分にはσl(C)の電気量があり、N=4πkσl(本)の電気力線が出て、半径r(m)の円柱面(表面積S==2πrl)を貫いている。対称性から面上の電界Eは共通であり、 E=N/S=4πkσl/2πrl=2kσ/r(N/C) この解答について答えはわかったのですが、単位がよくわかりません。 分子については、C/m×m=C 分母については、m^2でしょうか? なので、単位はm^2/ Cかな? と思ったのですが、解答は、N/Cとなっていました。これはどうしてなのでしょうか? 以前、電界の単位というのは決まっているのか、とここで質問させていただいたときは、電界の単位というのは一律的には決まっていなくて、問題に依存する、と回答していただいたのですが、この問題の場合は、どのように考えたらよいのでしょうか? 基本的なところだとは思いますが、よろしくお願いします。 線電荷による電位 単位長さあたりq[C]の無限直線の線電荷から距離aだけ離れた点の電位を求めたいのですが。 電界はE=q/4πε0a[V/m]となったのですが、ここから電位を求めるにはどうすればいいのでしょうか?点電荷だと-∫[∞→r]Edrというような感じで求めることができると思いますが、線電荷の場合はどうなのでしょう? 以下の問題の解き方と回答を教えて下さい。 以下の問題の解き方と回答を教えて下さい。 無限長の直線に単位長さ当たりq(C/m)の電荷が一様に分布している。この直線から垂直な距離r1(m)とr2(m)の2点において、点r2に対する点r1の電位差V12を求めよ。但し、r1(m)<r2(m)である。 以上です。 よろしくお願いいたします。 電界の求め方について z軸上のz=-L/2[m]からz=L/2[m]までの線電荷密度ρ[c/m]で一様に分布した長さLの直線電荷について、直線電荷の中心から軸に沿ってz[m]離れた位置における電界Eを求めよ。という問題で、E=ρ/4πε×L/{z^2-(L/2)^2}[V/m]となるみたいなんですが、どうしたらL/{z^2-(L/2)^2}が出てくるかがわかりません。よかったら教えてください。 電磁気 真空中に密度ρ[c/m^2]で一様に電荷が帯電した無限に広い平面(xy平面上)から距離a[m]の位置に点p(0,0,a)がある。 (1)pにおける電界ベクトルEをもとめよ (2)pにおける電界ベクトルEのうち、E/2は点pから距離2aの範囲に存在する電荷からの寄与であることを求めよ 電界の強さが0になる点 電磁気の知識不足で困ってます。 以下問題文です。 ---------- A点に+2Q[C]、B点に-Q[C]の点電荷を置いた。(一直線上でA点は左、B点は右にあり、この間にP点が存在しています。) (1) AB間のP点における電界の向きと強さを求めよ。ただし、クーロンの法則の比例定数をk、AB=d[m]、AP=x[m]、Q>0、0<x<dとする。 (2) 直線AB上で、電界の強さが0になるR点はどこか。 ------------ (1)は解けましたが(2)がわかりません。 (1)で、P点の右向きに電界A、電界Bが生じることは解ります。(A、Bには引力が働き、正電荷は力と同じ向きに電界が生じ、負電荷は力と逆向きに電界が生じるため) (2)は解答に B点より右側にR点があり、R点には右向きの電界Aと左向きの電界Bが生じると載っています。 何故(1)では右向きに働いていた電界Bが(2)では左向きに働くのでしょうか…? 基礎の問題だとは思いますが、詳しく教えて頂けると嬉しいです。 真空中で図(PABの三角形でABは2mでPからABの中点に向かって1m 真空中で図(PABの三角形でABは2mでPからABの中点に向かって1m)の点Aに2C、点Bに4Cの点電荷を置いたとき点Pの電界→Eを求めよ。 また点Aの電荷を-2Cに変えたときの点Pの電界→E’を求めよ。 解:ともに電界の大きさは20.1×10^9N さっぱり分からないので教えてください。お願いします。 真空中で図(PABの三角形でABは2mでPからABの中点に向かって1m 真空中で図(PABの三角形でABは2mでPからABの中点に向かって1m)の点Aに2C、点Bに4Cの点電荷を置いたとき点Pの電界→Eを求めよ。 また点Aの電荷を-2Cに変えたときの点Pの電界→E’を求めよ。 解:ともに電界の大きさは20.1×10^9N さっぱり分からないので教えてください。お願いします。 電界 一辺4メートルの正三角形ABCの一辺ABに細い直線状導体が置かれていて、この導体に1クーロンの電荷を与えたとき頂点Cでの電界を求めたいのですが、どう考えればよいのでしょうか。 点電荷が置かれている時の電界は求められるのですが、直線状導体の場合はわかりませんでした。 回答をよろしくお願いします。 電磁気学に関する問題についての回答お願いします。 電磁気学の問題になります 真空中に図のような半径a[m]の円柱導体とそれを取り囲む半径c[m]の円柱導体よりなる無限長同軸導体がある。円柱導体の周囲は中心より半径b[m]の範囲まで正の一様な電荷密度ρ[C/m^3]で満たされている。円筒導体は接地されており、厚さは考えなくて良い。中心軸からの距離をr[m]として、次の問いに答えよ。ただし、真空の誘電率をε0とする。 (1)中心軸を垂直に横切る断面において、r>b範囲での電気力線の様子を描け。 (2)中心軸を円筒座標系のz軸にとり、rにおける電界E(r)[V/m]を求めよ。 (3)電界の強さE(r)を縦軸、rを横軸にとり、電界のrに対する変化の様子をグラフに描け。 (4)中心から距離aおよび、bの点における電位Va[V]および、Vb[V]を求めよ。 (1)については、円柱の上面、底面には電界はなく、放射状に単位ベクトルer方向の電界が出来る感じでいいのでしょうか? (2)は、ガウスの法則の積分系と微分系の2つのやり方でやってみたのですが、2つとも考え方が正しいのかご指摘お願いします。細かいところまで指摘してほしいため、出来るだけ詳細に考え方を書きました。 ・積分系によるやり方 r<aの範囲について r<aの範囲には電荷分布がないので、E=0 a<r<bの範囲について 導体なので、内部には電荷はなく表面に電荷が分布して、E=0 ちなみに、電荷は外側の表面だけに集まるのでしょうか?この場合、円筒導体は接地されているので、静電気的な力で。もし接地されていなければ、外面と内面に半分ずつに電荷が分布するのでしょうか?どのような割合で分布するのでしょうか? b<r<cの範囲について ガウスの積分法則∫E・dA=(Q/ε0)を用いて、Aは円柱の表面積なので、2πrz。 Qは、ρが表面に集まるという考え方が正しいとすると、Q=(2πbz)ρ。 ただ、このやり方だと、b*zということで、次元は、[M^2]で、ρは、[C/M^3]の次元で、Q=[C/M]の次元となり、間違っているとも思うのですが。。。 よって、E(2πrz)=(1/ε0)(2πbzρ)より、E=(b*ρ)/(ε0*r) r>cの範囲について 円筒導体が接地されていることにより、円柱導体の周りの電荷と等量の負の符号の電荷が分布すると考えたので、円柱状のガウス面を考えてやると、相殺して、外側の電界は、E=0となりました。 ・微分系によるやり方 b<r<cの範囲について divD=ρという微分系のガウスの法則を用いる。φ方向や、z方向は電界は一定で、rだけに依存すると考えられるので、円柱座標のdivDの式をつかって、(1/r)d(rDr)/dr=0より、rDr=C(ただし、Cは、積分定数)。 r=bでは、導体と真空という誘電体の境界なので、Dr=ρとなって、b*ρ=C よって、rDr=b*ρとなり、Dr=(b*ρ)/rとなりました。 よって、E=(b*ρ)/(ε0*r) 勘違いしているところや、おかしな考え方をしているところはどこでしょうか?ご指摘と、なぜ間違っているか理由を教えてください。 (3)については、円柱と円筒の間では、1次関数的に電界の強さは、下がっていき、その他の場所ではE(r)=0というグラフでよろしいでしょうか? (4)は、E=-gradVから得られEを積分して求めればよいとは思うのですが、積分範囲をどうすればいいのかよく分かりません。 回答よろしくお願いいたします。 電気磁気学の問題を教えてください。 申し訳ありませんが、教えてください。 真空の状態で、2個の点電荷Q_1=6×10^-8[C]とQ_2=-12×10^-8[C]が0.1[m]離れていて、その時の電界の強さ0の点を求める問題が、解けません。 答えは、 「2個の点電荷を結ぶ直線の延長上でQ_1=6×10^-8[C]から0.241[m]の点」 です。 お分かりになる方、教えてください。よろしくお願いします。 電界の強さの求め方について よろしくお願いします。 大学受験問題集に載っている問題です。電界の強さをガウスの法則を使って求める問題なのですが、ガウスでは、球面、今回は、円柱で、その際の使い方がよくわかりません。 問題 一直線上に、単位長さあたりσ(C/m)の正電荷が一様に分布している。この直線からr(m)離れた点での電界の強さを求めよ。 解説 対称性から電気力線は直線Lに垂直になる。Lに沿って長さl(m)の部分にはσl(C)の電気量があり、N=4πkσl(本)の電気力線が出て、---☆ 半径r(m)の円柱面(表面積S==2πrl)を貫いている。対称性から面上の電界Eは共通であり、 E=N/S=4πkσl/2πrl=2kσ/r(N/C) とありますが、☆のところで質問です。 どうして、N=4πkσl(本)となるのでしょうか? ガウスの法則では、総本数はN=4πkQ(本)となっていて、きっとこのQをσlにおきかえたのだと思いますが、 そもそもここでガウスの法則は使えるのでしょうか?ガウスの法則でN=4πkQ(本)となっているのは、電荷Qから半径rのところの電気力線の総本数で、球面の表面積が4πr^2だから、総本数N=(kQ/r^2)×4πr^2となっていると思います。 でも、今回の問題は、球ではなく、円柱と考えられるので、表面積は4πr^2にはならないので、総本数も4πkQ(4πkσl)にはならないと思います。 自分なりに考えてみると、電界E=総本数N/表面積Sで、表面積は、2πrl。総本数は、r離れたところで、kσ/r^2で、これは、1m^2当たりの本数なので、表面積全体では、kσ/r^2×2πrlかなと思いました。 ただ、どうも違うような気もします。 きっと解説があっているのだとは思いますが、どうして、☆のようになるのかと、自分の考え方のどこが間違っているのかがわかりません。 アドバイスをいただけるとうれしいです。 よろしくお願いします。 電気磁気 真空中において直交座標系z-y平面に原点Oを中心とする半径a[m]の円Cがある。円C上には、線電荷密度+λ[C/m]の電荷が一様に分布している。 1)原点Oを中心とする半径r[m]の球状の閉 曲面Sを貫く電気力線の総本数を求めよ。 (2) 円状の電荷がz軸上の点P(0,0,+h)につ くる電界ベクトルEを求めよ。 (3)Z軸上の点P(0,0,+h)から点(0,0,-h) に点電荷+q [c]を運ぶのに要する仕事W を求めよ. 3)がわからないです。 解説お願いします🙇 分からないので教えてください。 分からないので教えてください。 1.真空中で図(PABの三角形でABは2mでPからABの中点に向かって1m)の点Aに2C、点Bに4Cの点電荷を置いたとき点Pの電界→Eを求めよ。 また点Aの電荷を-2Cに変えたときの点Pの電界→E’を求めよ。 解:ともに電界の大きさは20.1×10^9N 2.一辺がaの正方形の各頂点に負電荷-q、中心に正電荷Qの点電荷を置いたとき全ての点電荷についてクーロン力の平衡が取れたという。電荷Qとqとの関係を求めよ。 解:Q=((2√2+1)/4)q 3.2つの正電荷Q(C)とnQ(C)をL(m)だけ離してある。両電荷を結ぶ線上において、電界の大きさが0になる点はQから何m離れた場所にあるか。 解:L/(1+√n)[m] 4.電荷Q(C)と2Q(C)が2m離れている。点P(Qと2Qの中点から√3m上にある)での電位を求めよ。 解:V=3Q/8πε0[V] 直線上に分布した電場による電場 単位長さあたりの電荷量がλの無限に長い直線上の電荷を真空中に置いた。 直線上電荷からrだけ離れた位置の電界の大きさEを求めよ。(ただし真空の誘電率をε0とする) という問題なのですが。 ガウスの法則では求めることができました。 1/4πε0∫λdl/r^2と計算したらうまくできませんでした。 ∫dlの線積分のところを半径rの円周の長さと線密度が一定と考えて ∫dl=2πrとしました。 どう計算すればいいのでしょうか? 回答お願いします。 以下の問題がわかりません 以下の問題がわかりません [真空中に半径a[m]のリングが電荷密度(線密度)ρ[C/m]で帯電しているとき、以下の問いに答えよ なお リング状電荷はx‐y平面に置かれているものとする。ただし 真空の誘電率はε。円周率はπとし 解答にはそのまま解答して良い なお 解答の過程も解答すること 1 リング上に微小線素dlを考える dlがリングの中心からb[m]離れた中心軸上の点Cに作る微小線素dEの大きさを式で示せ。 2 リング上のすべての電荷が点Cに作る電界の方向はどちらの方向になるか。x、y、zで答え、理由も解答せよ。 3 点Cの電界Eの大きさを求めよ。 4 リングの中心の電界E。の大きさを求めよ。] わかる方 解答の方よろしくお願いいたします 電磁気 半径a[m]の球があります。この球が点対称な空間電荷密度ρ(r)=ρ0(1-(r/a)^2)[c/㎥]を持つとき、球の内外に生じる電界E(r)を求めなさい。という問題なんですが分かるかたいたら教えてください>< (a)正電荷Q=2×10^-9[c]が、間隔2[m]離れた直線状の点P (a)正電荷Q=2×10^-9[c]が、間隔2[m]離れた直線状の点Pに作る電界の大きさと方向(右向き・左向き)を求めよ。ただしko=9×10^9とする (b)点Qの座標を原点、点Pの座標を(2,0,0)としたときの点Pの電界をベクトルとして表現せよ (c)点Pに電荷+2[c]の電荷を置いた。点Pの電荷は点Qの電荷が作る電界から式F(→)=qE(→)に従うクーロン力を受ける。この力をベクトルとして体現せよ という三つの問題があって、(a)の問題は点電荷による電界なので、その公式に当てはめて計算して分かったのですが、後の二問が分かりません。 どう分からないかというと、最後に記されている「この力をベクトルとして体現せよ」というところです。(c)に記されている公式を使って解いてゆくのは分かったのですが、最後の文章とどう関係があるのでしょうか? 教えてください!! 電界と電位 十分に細く無限に長い棒に単位長さあたりqの正電荷が均等に帯電している。この棒から距離rだけ離れた点での電界の強さを求めよ。 という問題で、どういうところから考えていけばいいかいまいち分かりません…。 自分は単純に、電界の強さをもとめるのか、じゃぁE=の公式を使えばいいな。と思うのですが…。 模範解答は、N=4πk0Qを用いる。と書いてあります。 初めにこれを用いるって思いつくポイントって何ですか…? たとえばEについての公式はE=k0 lql/r^2っていう公式も思いつくし…。 どれを使えばいいのかで苦労します。 そして続きは… 表面の電界のつよさをEとすると、電荷、電界、電気力線の関係はE×S=N したがってE×2πr=4πk0qとなりE=に直したのが答えになっています。 S=表面積ですよね。この場合は点電荷ではないから球じゃなく円柱だから、この場合のSってのは円周のことでしょうか?だから直径×πとなっているのでしょうか? 電磁気でよくわからない問題があります 線電荷密度λ〔C/m〕で一様に帯電した長さa〔m〕の直線がある。この直線の中心から垂直方向にa〔m〕 の距離にある点Pにおける電場Eを求めよ。 一度自分で解いてみたのですがまったく自信が無いため、どなたか分かるかた回答をよろしくお願いします。 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 応用科学(農工医) 電気・電子工学情報工学建築・土木・環境工学農学医学・歯学・看護学・保健学薬学AI・機械学習その他(応用科学) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど