ベストアンサー 次の確率分布の問題の解答解説をお願いします。 2017/07/08 15:46 ・ある地域で作られた古銭の銅の含有率は平均68.3g,標準偏差1.2gの正規分布に従う。任意に選んだ12枚の古銭の銅の含有率の平均値が68.9g以下である確率を求めよ。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー masudaya ベストアンサー率47% (250/524) 2017/07/10 18:09 回答No.1 連投で,自分の考えも記載が無いので気が引けますが 簡単そうなこの問題だけ,考え方を示します. 含有率であれば単位は比なので無単位か% 単位がgであれば,含有量になります. 問題は正確に提示しないと回答できない場合があります. 最後の方にいれた確率変数がExp(λ)に従うでは何のことか(たぶんポアソン分布打と思うが)分かりません. 以下の銅含有量として考えます. 古銭の銅含有量が68.9g以下という事は (68.9-68.3)÷1.2=0.5 p=∫(-∞~0.5)標準正規分布関数 dx= 0.5(-∞~0までの積分値)+数値表の0.5のところの値 これで,1枚あたりの確率が出ます.12枚全てがこうなるのは, p^12となります. pはだいたい0.7くらいになるので,1%程度になると思います. 質問者 お礼 2017/07/16 09:28 よくわかりました。丁寧にありがとうございました! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 1 カテゴリ 学問・教育数学・算数 関連するQ&A 次の確率分布の問題の解答解説をお願いします。 ・ある交差点での1時間当たりの車の通行台数は平均1台のポアソン分布に従う。次の確率を求めよ。 (a)1時間における通行台数が1台以下である確率。 (b)2時間における通行台数が2台以下である確率。 (c)3時間における通行台数が3台以下である確率。 至急、次の問題の解答・解説お願いします ある銀行は平均10%の不良債権を抱えている。 (1)もしその銀行がある月に20件の貸し付けをしたならば、そのうち不良債権が 1件以下である確率はいくらか (2)平均何件の不良債権が発生するか。また標準偏差は何件か 二項分布を使ってお願いします 標準偏差の問題です 平均値U=10、標準偏差α=2となる正規分布で、任意に取り出した1つが8と16 との間に入る確率を標準正規分布表より求めなさい。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 確率 正規分布 確率 正規分布 確率変数Xが正規分布N(5,2^2)に従う (1)P(6<=X<=9) (2)P(3<=X<=8) (3)P(X<=10) を求めよ という問題があるのですが、標準化変換のところがイマイチわかりません 調べたら 6=m+a 9=m+2a(mは平均、aを標準偏差としたとき) とかいてあるのですがそこからなぜ標準化変換したらP(0.5<=Z<=2)になるのかわかりません どなたかよろしくお願いします 正規分布ではない分布について 確率・統計の質問です。 正規分布を仮定すると平均値-2σくらいで 物理的にはありえない負の数をとる場合 (例えば含有率や面積率など) どういった分布を仮定すれば良いのでしょうか? なにか良い方法があれば教えてください。 β分布やΓ分布を使うのでしょうか? 標準正規分布に従う2つの分布が同時に起こる確率 標準正規分布に従う2つの分布が重なり合う確率(同時に起こる確率)を求めたいのですが、 どのようにすればよいか?教えてください A 平均=25.9955,σ=0.001125 B 平均=26.0075,σ=0.005625 よろしくお願いします。 確率統計における確率分布の定理について 検定を行うときの確率分布のあてはめで、 データをk個の事象に分けて統計量X^2を求め、それが自由度k-r-1のカイ2乗分布に従う、 rは期待値を求める際に母数で推定したももの個数で、標本平均と標本分散を使用したとすればr=2、 という定理を使うと思うのですが、 例えばデータを身長として検定を行う場合はそれを標準化して、 期待値の算出にサンプルの平均、標準偏差を使うのでr=2で自由度はk-3になりますよね? ここで上の定理が正しいことを確かめるためにデータを1,000個ほどの標準正規乱数として、X^2を複数回求め、 その分布が実際にカイ2乗分布に従うかどうかを調べるときは自由度はどうなるのでしょうか? 1,000個の標準正規乱数が実際に標準正規分布に従うとして平均=0、分散=1として行う場合はr=0、 また標準正規分布に従うかではなく1,000個のサンプルから新たに平均、標準偏差を求めてX^2を求める場合はr=2となると考えたのですが、これは正しいのでしょうか? わかりにくい文ですみません。 よろしくお願いします。 正規分布表 確率のけいさんについて 正規分布の確率の求め方について 正規分布表から次の確率を求めろという問題なんですがあってますか?? p(z>1.05) =0.1469 p(z>-0.75)=0.2734 p(z<-2.00)=0.4772 p(z<1.96)=0.0250 であってますか?? (2) 平均が70で、標準偏差が20の母集団の正規分布の形態がある。 75より大きい標本平均を得るそれぞれの確率を求めよ。 1、無作為標本の個数が25のとき 2、無作為標本の個数が400のとき 計算のしかたなんですけど、 1の場合 (75-70)=2 2/20√25 ですか?? よく分からないので詳しく教えて頂きたいです。。。 よろしくお願いします>< 正規分布の問題 大学の小テストの過去問なのですがわかりません。。 ある大学の男性の平均身長は170cm,標準偏差10cm 女性の平均身長は156cm,標準偏差9.6cmで正規分布である。 この大学からランダムに男性1人,女性1人を選んだ場合,男性の身長が女性の身長より高い確率を求めよ。 テスト用紙には標準正規分布表があります。 お願いします。 ワイブル分布の標準偏差 統計初心者です。 ワイブル確率紙のプロットからmの値と平均寿命、標準偏差が求められるようですが、標準偏差はどのように使うのでしょうか?正規分布していないものの標準偏差とは?何でしょうか? 平均寿命±3シグマで99.7%がその範囲に入る??(正規分布ではないので違うと思いますが?) よろしくご教授願います。 正規分布 性質 あるXに対して、確率変数Yは正規分布 平均値=2X+1 標準偏差σ=1 グラフから見ると平均値の集合は直線です。聞きたいのは、これらの正規分布を合わせて、一つの何かの分布になりませんか 以下の統計学の問題の解説をお教えください。 以下の統計学の問題の解説をお教えください。 (1)100人の学生の現在と10年前の身長を記録したデータによれば、現在の身長の平均は170cm、標準偏差は10cmであり、10年前の身長の平均は150cm、標準偏差は6cmである。このデータから、各学生の現在と過去の身長の和を計算すると、その平均と標準偏差はどのようになると考えられるか。以下の選択肢a-fの中から最も正しいと思われるものを二つ選べ。 a.和の平均は320cmである b.和の平均は320cm以上である c.和の平均は320cm以下となる d.和の標準偏差はほぼ12cmとなる e.和の標準偏差はほぼ16cmとなる f.和の標準偏差はほぼ13cm以上16cm以下となる (2)以下の中から正しいものを全て選べ。 1.分布が単峰の場合、中央値は、平均値と最頻値の間にある。 2.ヒストグラムを描いたときに、左裾が長い分布の歪度は負となる。 3.標準正規分布をする確率変数が1.96を超える確率は約0.025である。 4.ひとつの変数群を、他の変数群で説明しようとする統計的手法の典型的なものは、回帰分析と呼ばれている。 5.Tが自由度5のt分布をする確率変数、Zが標準正規分布をする確率変数である場合、Pr(T>1.96)のほうがPr(Z>1.96)よりも小さい。 6.統計的検定を行う場合、直接にコントロールされるのは、第1種の過誤のみで、第2種の過誤は間接的にコントロールされる場合が多い。 7.通常、第2種の過誤を犯す確率は、サンプル数を増やすと大きくなる。 8.カイ二乗分布は、比率の標本分布として用いられることが多い。 9.二つの確率変数が独立の場合、その和の分散は、それぞれの分散の和となる。 10.順序尺度水準で測定されている変数を使った分析の結果は、その変数に単調増加変換を施した別の変数を用いた分析結果と変わらないはずである。 (3)ある世論調査で、内閣支持率が35%でその95%信頼区間の幅が±5%と出ていた。この解釈として最も適当なものを選べ。 a.内閣支持率は、ほぼ30%から40%の間にある b.内閣支持率が35%であるという仮説は5%水準で有意である c.内閣支持率が35%でないという仮説は5%水準で有意である d.内閣支持率が35%である確率は5%である 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 正規分布について こんばんは 統計初心者でお聞きしたいことがあり質問させていただきました。 正規分布では、95%のものが平均値±標準偏差×2の中に収まるというのはわかりました。 そこでお聞きしたいのが、正規分布を使って「目標値に達していない人が何%いるのか」というのを算出できるかということです。以下の数値を使用する予定です。 目標値2.4 平均値2.61 標準偏差1.69 例えばここで、「2.0以下の人が何%いるか」ということがわかるのでしょうか。 情報処理技術者試験 標準正規分布表 過去の問題で、どうしても理解できない問題があります。 わかる方、教えてください! 【問】 ある工場で製造している部品の長さの誤差は、平均0mm、標準偏差0.5mmの正規分布に 従っている。誤差の許容範囲が±1mmのとき、不良品の発生率は何%になるか。 標準正規分布法を用いて最も近い値を選べ。 「標準正規分布表」 確立変数 分布関数値 確立密度関数値 0.00-------0.5000-------0.3938 0.50-------0.6915-------0.3521 1.00-------0.8413-------0.2420 1.50-------0.9332-------0.1296 2.00-------0.9773-------0.0540 2.50-------0.9938-------0.0175 3.00-------0.9987-------0.0044 3.50-------0.9998-------0.0009 ア.2.3 イ.4.5 ウ.5.4 エ.15.9 答えは、(1-0.9773)×2×100=4.54% より「イ」 →何故ここで(1-0.9773)となるのでしょうか。 答えの説明では~ U =(許容範囲-平均)÷標準偏差 = 1-0(mm)÷0.5 = 2 「標準正規分布表」より、確率変数2の分布関数値を読み取ると、 0.9773となります。 これは、標準正規分布の半分で、0.5(50%)になりますので、 ±の両方で2倍します。 (1-0.9773)×2×100=4.54% ~以下類似問題でとき方が違うのは?~ ある製品の質量が平均100gで、標準偏差5gの正規分布に従う場合、 ±10gの誤差を超えるものを不良品とすると、不良品の確立は何%か。 U P 0.0 0.500 0.5 0.309 1.0 0.159 1.5 0.067 2.0 0.023 2.5 0.006 上記の場合、 規格品の範囲は、100±10gなので、90~110gとなります。 110gを元に標準化すると、 U=(110-100)÷5=2.0 となり、標準正規ぷんぷ表のU=2.0のPを読み取ると 0.023であり、左右対称であることから2倍します。 0.023×2=0.046 ** お願いします。 正規分布に関する問題です。 正規分布に関する問題です。 あるクラスの身長は、平均値174cm、標準偏差6cmの正規分布に従うとみなせる。このとき、身長が165cm以下の人は全体の約何%になるか求めよ。 という問題なんですが、どうやって計算したらいいかわかりません。教えてください。 統計の問題の解説をおねがいします 統計の問題ですが解説がなく詰まってしまいました。 わかる方教えて下さい。よろしくお願いします。 1,ある大学の男子学生と女子学生の身長はそれぞれ正規分布をし、男性の平均は175cm、標準偏差は10cm、女性の平均は161cm、標準偏差は9.8 cmであるという。この大学の男子学生一人と女子学生一人をランダムに選んだ場合、選ばれた男子学生の身長が女子学生の身長より高い確率はおよそいくつか。その確率を記せ。ただし、標準正規分布に関しては表を利用すること。(答えは0,84) 2,確率変数Xは自由度5のt分布をし、確率変数Yは標準正規分布をするとする。このとき、XやYがある定数zを越える確率に関して、z>0の場合に限りP(X>z)>P(Y>z)であることを示せ。 正規分布を使う問題なのですが計算の方針がわかりません。 正規分布を使う問題なのですが計算の方針がわかりません。 ある会社では製品を10万円で年間の需要量が平均10000個、標準偏差が1500個の正規分布を想定している。1個当たりの原価(変動費)が平均5万、標準偏差が0.5万の正規分布を見込んでいる。固定費は平均1.2億円、標準偏差が2000万である。この事業の利益はどのようになるか? と言う問題です。この問題はそれぞれの正規分布の表を足して計算すればできそうな感じがするのですが良く分かりません。誰か教えてください。 二つの分布の問題 確率問題の解き方について教えてください. 自分で途中まで計算してみたのですが,間違っている気がします. それ以外の方法も思いつきません. よろしくお願いします. *問題内容* 二つの確率変数XaとXbが,Xa>=Xbである確率はいくつか. XaとXbは平均値ma,mb,標準偏差ua,ubの正規分布をしています. *私のやったおそらく間違った解* 1)任意のpに対して, XA>=pである確率,XB<=pである確率 を求めて,両者の積を求める. 2)1)の値をpについて 負の無限大から正の無限大まで積分する. 確率・統計の問題についての質問です。 問題:「確率変数Xは、平均50、分散9の正規分布に 従うとする。次の条件を満たすCを求めよ。」 ・P(50-C<X<50+C)=99.7% 手持ちの回答では、「Xを標準化した確率変数をZとすると、 Zは標準正規分布に従う、そして今、標準正規分布において 確率が99.7%になるのはZが+-3σの範囲である。 よって、C/σ=3からC=9となる」(σ:標準偏差) ここで私が疑問に持ったのはなぜ?Zの範囲+-3にσを かけるのでしょうか?いま分散が9ということはσは3ですよね? しかし、3のままで式を変形していくと、C=9にはならない と思います。なぜσをつけるのでしょうか? そこのところがわかりません。 どなたか教えてください。 よろしくお願いします<(_ _)>。 正規分布についての問題です。 あるクラスの生徒40人のBMI(ボディマス指数)は平均20.2、標準偏差4.6の正規分布に従っています。BMIが18.5未満は低体重とされ、25以上は肥満とされます。BMIが低体重または肥満と判定された生徒の数がクラスの全生徒数の10%以下になる確率を教えてください。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
よくわかりました。丁寧にありがとうございました!