- 締切済み
白玉と赤玉の交換
袋Aには白玉4個、袋Bには赤玉4個が入っている。ただしすべての玉は同じ大きさであるとする。2つの袋から同時に任意の玉を1個ずつ取り出して入れ替えるという操作を繰り返すとき、次の確率を求めよ。 4回後、もとの状態に戻る確率。 3回後に袋A:白3個、赤1個、袋B:白1個、赤3個となっていなければならない。 このとき、1回後 袋A:白3個、赤1個、袋B:白1個、赤3個 2回後 袋A:白3個、赤1個、袋B:白1個、赤3個 3回後 袋A:白3個、赤1個、袋B:白1個、赤3個・・・(1)の確率を求まる際、 赤玉1個を2回、3回と交換すると考え、1^2*1/4*3/4*1/4*3/4=9/256 また、白玉1個を2回、3回と交換すると考え、1^2*3/4*1/4*3/4*1/4=9/256 これらを足し合わせて9/128とするのは間違えになりました。 解説では(1)の場合、1回の交換で、袋Aから白玉、袋Bから白玉、または袋Aから赤玉、袋Bから赤玉を取り出す。と考え、3/4*1/4+1/4*3/4=3/8 よって3/8*3/8=9/64となります。 1^2*1/4*3/4*1/4*3/4=9/256と、1^2*3/4*1/4*3/4*1/4=9/256の間違えを、指摘してください。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- asuncion
- ベストアンサー率33% (2127/6289)
回答No.1
>このとき、1回後 袋A:白3個、赤1個、袋B:白1個、赤3個 > 2回後 袋A:白3個、赤1個、袋B:白1個、赤3個 > 3回後 袋A:白3個、赤1個、袋B:白1個、赤3個・・・(1) 2回後で袋A:白2個&赤2個、袋B:白2個&赤2個になるケースを計算していないのが まずいのではないでしょうか。
お礼
具体的なケースの指摘、ありがとうございます。