c>0
f(x)=√(x^2+c^2)
m>0
E(x)=x^2/(2m)+f(x)
L(x,y,z)=(x^2+y^2+2xyz)/(2m)+f(x)+f(y)
h(x,y,z)=(zx^3y^3)/{f(x)f(y)}(1/E(x)^2+1/E(y)^2)(1/E(x)+1/E(y))1/L(x,y,z)
a>0
S_n=∫_{-1→1}dz∫_{a→n}dy∫_{a→n}h(x,y,z)dx
g(x,y,z)=h(x,y,z)+h(x,y,-z)
g1(x,y,z)=-(2/m)z^2[y^4/{f(y)E(y)^3}]x^4/{f(x)L(x,y,z)L(x,y,-z)}
g2(x,y,z)=-(2/m)z^2[y^4/{f(y)E(y)^2}]x^4/{f(x)E(x)L(x,y,z)L(x,y,-z)}
S1_n=∫_{0→1}dz∫_{a→n}dy∫_{y→2y}g1(x,y,z)dx
S2_n=∫_{0→1}dz∫_{a→n}dy∫_{2y→n}g1(x,y,z)dx
S3_n=∫_{0→1}dz∫_{a→n}dy∫_{y→2y}g2(x,y,z)dx
S4_n=∫_{0→1}dz∫_{a→n}dy∫_{2y→n}g2(x,y,z)dx
とすると
lim_{n→∞}S_n=-∞
S_nはn→∞の時(≦-logn)のオーダーで(-∞)(負の∞)に発散する
S_n=2S1_n+2S2_n+2S3_n+2S4_n
a≦xの時
x^2<x^2+c^2
x<f(x)
1/f(x)<1/x
x<L(x,y,z)
x<L(x,y,z)
1/L(x,y,z)<1/x
1/L(x,y,-z)<1/x
x^2/(2m)<E(x)
1/E(x)<2m/x^2
∫_{y→2y}x^4/{f(x)L(x,y,z)L(x,y,-z)}dx
<∫_{y→2y}xdx
<[x^2/2]_{y→2y}
=3y^2/2
a≦yの時
1/f(y)<1/y
y^2/(2m)<E(y)
1/E(y)<2m/y^2
(2/m)∫_{0→1}(z^2)dz∫_{a→n}y^4/{f(y)E(y)^3}dy∫_{y→2y}x^4/{f(x)L(x,y,z)L(x,y,-z)}dx
<(3/m)∫_{a→n}y^6/{f(y)E(y)^3}dy
<24m^2∫_{a→n}(1/y)dy
<(24m^2)logn
0
>S1_n
>-(24m^2)logn
∫_{y→2y}x^4/{f(x)E(x)L(x,y,z)L(x,y,-z)}dx
<2m∫_{y→2y}(1/x)dx
<2mlog2
(2/m)∫_{0→1}(z^2)dz∫_{a→n}[y^4/{f(y)E(y)^2}]dy∫_{y→2y}x^4/{f(x)E(x)L(x,y,z)L(x,y,-z)}dx
<4log2∫_{a→n}[y^4/{f(y)E(y)^2}]dy
<8mlog2∫_{a→n}(1/y)dy
<8m(log2)logn
0
>S3_n
>-8m(log2)logn
2y<xの時
x/2<x-y
x^2/4<(x-y)^2
x^2/(8m)<(x-y)^2/(2m)
x^2/(8m)<{(x-y)^2+2xy(1±z)}/(2m)+f(x)+f(y)
x^2/(8m)<L(x,y,z)
x^2/(8m)<L(x,y,-z)
1/L(x,y,z)<8m/x^2
1/L(x,y,-z)<8m/x^2
∫_{2y→n}x^4/{f(x)L(x,y,z)L(x,y,-z)}dx
<64m^2∫_{2y→n}(1/x)dx
<(64m^2)logn
(2/m)∫_{0→1}(z^2)dz∫_{a→n}y^4/{f(y)E(y)^3}dy∫_{2y→n}x^4/{f(x)L(x,y,z)L(x,y,-z)}dx
<(128m)logn∫_{a→n}y^4/{f(y)E(y)^3}dy
<(1024m^4)logn∫_{a→n}(1/y^3)dy
=(512m^4)(logn)[1/a^2-1/n^2]
<(512m^4/a^2)logn
0
>S2_n
>-(1024m^4/a^2)logn
∫_{2y→n}x^4/{f(x)E(x)L(x,y,z)L(x,y,-z)}dx
<128m^3∫_{2y→n}(1/x^3)dx
=64m^3[1/(8y^3)-1/n^2]
<8m^3/y^3
(2/m)∫_{0→1}(z^2)dz∫_{a→n}[y^4/{f(y)E(y)^2}]dy∫_{2y→n}x^4/{f(x)E(x)L(x,y,z)L(x,y,-z)}dx
<16m^2∫_{a→n}[y/{f(y)E(y)^2}]dy
<64m^4∫_{a→n}(1/y^4)dy
=(64m^4/3)(1/a^3-1/n^3)
<64m^4/(3a^3)
0
>S4_n
>-64m^4/(3a^3)
0
>S_n
>-8m(6m+log2-25m^3/a^2)logn-128m^4/(3a^3
∴
S_nはn→∞の時(-logn)のオーダーで(-∞)(負の∞)に発散する
お礼
大変良くわかりました。 ありがとうございます。